For proof of 3 divisibility, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
<h3>
Integers divisible by 3</h3>
The proof for divisibility of 3 implies that an integer is divisible by 3 if the sum of the digits is a multiple of 3.
<h3>Proof for the divisibility</h3>
111 = 1 + 1 + 1 = 3 (the sum is multiple of 3 = 3 x 1) (111/3 = 37)
222 = 2 + 2 + 2 = 6 (the sum is multiple of 3 = 3 x 2) (222/3 = 74)
213 = 2 + 1 + 3 = 6 ( (the sum is multiple of 3 = 3 x 2) (213/3 = 71)
27 = 2 + 7 = 9 (the sum is multiple of 3 = 3 x 3) (27/3 = 9)
Thus, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
Learn more about divisibility here: brainly.com/question/9462805
#SPJ1
Simplifying
x + 0.7 = 1 + -0.2x
Reorder the terms:
0.7 + x = 1 + -0.2x
Solving
0.7 + x = 1 + -0.2x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.2x' to each side of the equation.
0.7 + x + 0.2x = 1 + -0.2x + 0.2x
Combine like terms: x + 0.2x = 1.2x
0.7 + 1.2x = 1 + -0.2x + 0.2x
Combine like terms: -0.2x + 0.2x = 0.0
0.7 + 1.2x = 1 + 0.0
0.7 + 1.2x = 1
Add '-0.7' to each side of the equation.
0.7 + -0.7 + 1.2x = 1 + -0.7
Combine like terms: 0.7 + -0.7 = 0.0
0.0 + 1.2x = 1 + -0.7
1.2x = 1 + -0.7
Combine like terms: 1 + -0.7 = 0.3
1.2x = 0.3
Divide each side by '1.2'.
x = 0.25
Simplifying
x = 0.25
I only know 1 way.
1) C(2
2) A(-4
3) B(4+(2+1)=4+2)+1
4) D(3(2x4)=(3x2)4
5) A(5+6=6+5
6) C(12x1=1x12
7) D(Exponents
8) A(addition and subtraction
9) A(55
10) B(19
Answer:
C. 3/2x
Step-by-step explanation:
Firstly, we know that the slopes are the same because parallel lines have the same slope. Then we can find the y-intercept by using the slope and point in slope-intercept form.
y = mx + b ---> plug in known values
3 = (3/2)(2) + b ---> Multiply
3 = 3 + b ---> Subtract 3 from both sides.
0 = b
Since the intercept is 0, you will not see a number after the slope and x.
Answer:
The answer is
<h2>

</h2>
Step-by-step explanation:
The distance between two points can be found by using the formula
<h3>

</h3>
where
(x1 , y1) and (x2 , y2) are the points
From the question the points are
(9,-8) and (-7,-5)
The distance between them is

We have the final answer as

Hope this helps you