The energy of moving electrical charges is Electrical energy
Hope its the answer you are finding and hope it helps....
Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
The car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Answer:
Explanation:
Momentum is measured as the product of mass of object with the velocity attained by that object.
Momentum of 2000 kg truck = Mass × Velocity
Momentum of 2000 kg truck = 2000×30 = 60000 N
Similarly, the momentum of 1000 kg car will be 1000× velocity of the 1000 kg car.
Since, it is stated that momentum of 2000 kg truck is equal to the momentum of 1000 kg of car, then the velocity of 1000 kg of car can be determined by equating the momentum of car and truck.
Momentum of 2000 kg truck = Momentum of 1000 kg car
60000=1000×velocity of 1000 kg car
Velocity of 1000 kg car = 60000/1000=60 m/s
So, the car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Speed can be thought of as the rate at which an object covers distance. ... Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second, but the most common unit of speed in everyday usage is the kilometre per hour or, in the US and the UK, miles per hour........?