1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
3 years ago
10

2x(x-1) as a product and as a sum.

Mathematics
2 answers:
cupoosta [38]3 years ago
8 0

2x (x -1)

= (2x)(x+ -1)

= (2x(x) + (2x)(-1)

= 2x -2

now this part im not sure about but try this:

x + x - 1 - 1

Sladkaya [172]3 years ago
3 0
The answer is 0. 2x-2x=0

You might be interested in
in a multiplication problem, if the first factor has 5 digits after the decimal and the second factor has 4 digits after the dec
STatiana [176]
9 digits after the decimal because 5+4=9
4 0
4 years ago
Read 2 more answers
Find the number,if 1/5 of it is 15
Nikitich [7]

Answer:

The number is 75

Step-by-step explanation:

Let x be the unknown number

of means multiply and is means =

1/5 x = 15

Multiply each side by 5

5 * 1/5 x = 5*15

x = 75

4 0
3 years ago
Read 2 more answers
What is the area, measured in square centimeters, of the parallelogram below? Do not include units in your answer. 70cm 80cm
Likurg_2 [28]
Since you don't have the picture, I can explain how to do the problem. Then, you can select the correct answer.

To find the area of a parallelogram, you must multiply the base times the height. If you have those 2 values, just multiply them and you will be done.
4 0
4 years ago
If f(x)=-3x-2, find each value.<br> 1. f(3)
rewona [7]

Answer:

Step-by-step explanation:

plug in 3 for x then simplify

-3(3) - 2

= -9 - 2

= -11

hope this helps <3

7 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Help 5 minutes!!! I’m giving 50 points
    12·2 answers
  • What is the area under the normal curve between z-scores of 2.39 and 2.76
    13·1 answer
  • Henry buy 1/4 pounds of screws and 2/5 pounds of nails to build a skateboard ramp what is the total weight of the screws and nai
    6·1 answer
  • How i can do this ecuation
    7·1 answer
  • Which numbers repeat in the decimal form of 5/11
    14·1 answer
  • In this diagram, BD bisects ABC.
    8·1 answer
  • Can someone please help me out its due very soon,
    9·1 answer
  • Mr. Smith went to Disneyland and bought some popcorn for the family. A small popcorn was $7, while a larg popcorn came in a refi
    12·1 answer
  • The mean temperature for the first 4 days in January was -7°C.
    10·1 answer
  • "When I started here, there were 500 employees. Since then, we have
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!