Answer:
y=x^3
Step-by-step explanation:
I don't know y sha
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> (((3•(x2))•(y4))3)
4•——————————————————
((2x3•(y5))4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span><span> ((3x2 • (y4))3)
4 • ———————————————
24x12y20
</span><span> Step 3 :</span><span> 33x6y12
Simplify ————————
24x12y20
</span></span>Dividing exponential expressions :
<span> 3.1 </span> <span> x6</span> divided by <span>x12 = x(6 - 12) = x(-6) = 1/<span>x6</span></span>
Dividing exponential expressions :
<span> 3.2 </span> <span> y12</span> divided by <span>y20 = y(12 - 20) = y(-8) = 1/<span>y8</span></span>
<span>Equation at the end of step 3 :</span><span> 27
4 • ——————
16x6y8
</span><span>Step 4 :</span>Final result :<span> 27
—————
4x6y<span>8</span></span>
Answer:
B
Step-by-step explanation:
Answer:
Step-by-step explanation:
Let points D, E and F have coordinates and
1. Midpoint M of segment DF has coordinates
2. Midpoint N of segment EF has coordinates
3. By the triangle midline theorem, midline MN is parallel to the side DE of the triangle DEF, then points M and N are endpoints of the midsegment for DEF that is parallel to DE.