1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
2 years ago
10

%7Bx%7D%20%20%2B%20%20%7B%20log_%7Be%7Dx%20%7D%20%20%5C%3A%20%20%5C%3A%20%20find%20%5C%3A%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \rm \: If \: y = {e}^{x} - \frac{1}{x} + { log_{e}x } \: \: find \: \frac{dy}{dx} " alt=" \rm \: If \: y = {e}^{x} - \frac{1}{x} + { log_{e}x } \: \: find \: \frac{dy}{dx} " align="absmiddle" class="latex-formula">
Thanks!!​
Mathematics
2 answers:
Margarita [4]2 years ago
6 0

We are given with a function <em>y</em> and need to find <em>dy/dx</em> or the first Derivative of <em>y w.r.t.x</em><em> </em><em>,</em><em> </em><em>but </em><em>let's</em><em> </em><em>recall </em>

  • {\boxed{\bf{\dfrac{d}{dx}\{f(x)\pm g(x)\pm h(x)\pm \cdots =\dfrac{d}{dx}\{f(x)\}\pm \dfrac{d}{dx}\{g(x)\}\pm \dfrac{d}{dx}\{h(x)\}\pm \cdots}}}

  • {\boxed{\bf{\dfrac{d}{dx}(x^n)=nx^{n-1}}}}

  • {\boxed{\bf{\dfrac{d}{dx}(log_{e}x)=\dfrac{1}{x}}}}

  • {\boxed{\bf{\dfrac{d}{dx}(e^x)=e^{x}}}}

Now consider :

{:\implies \quad \sf y=e^{x}-\dfrac{1}{x}+log_{e}x}

Differentiating both sides <em>w.r.t.x </em>

{:\implies \quad \sf \dfrac{d}{dx}(y)=\dfrac{d}{dx}\bigg\{e^{x}-\dfrac{1}{x}+log_{e}x\bigg\}}

{:\implies \quad \sf \dfrac{dy}{dx}=\dfrac{d}{dx}(e^x)-\dfrac{d}{dx}\left(\dfrac{1}{x}\right)+\dfrac{d}{dx}(log_{e}x)}

{:\implies \quad \sf \dfrac{dy}{dx}=e^{x}-\dfrac{d}{dx}(x^{-1})+\dfrac{1}{x}}

{:\implies \quad \sf \dfrac{dy}{dx}=e^{x}-(-1)(x)^{-1-1}+\dfrac{1}{x}}

{:\implies \quad \sf \dfrac{dy}{dx}=e^{x}+(x)^{-2}+\dfrac{1}{x}}

{:\implies \quad \sf \dfrac{dy}{dx}=e^{x}+\dfrac{1}{x^{2}}+\dfrac{1}{x}}

Simplifying will yield

{:\implies \quad \bf \therefore \quad \underline{\underline{\dfrac{dy}{dx}=\dfrac{e^{x}x^{2}+x^{2}+x}{x^{2}}}}}

<em>This is the required answer </em>

VLD [36.1K]2 years ago
3 0

Answer:

<u>Given </u><u>That:</u><u> </u>

{ \large \longrightarrow{ \rm{ y = {e}^{x} - \frac{1}{x} + { log_{e}x }}}}

<u>On </u><u>differentiating </u><u>partially</u><u> </u><u>w.</u><u>r</u><u>.</u><u>t</u><u>.</u><u> </u><u>x,</u><u> </u><u>we </u><u>get:</u><u> </u>

{\large { \longrightarrow{ \rm{\frac{d}{dx} y =  \frac{d}{dx}  \left(  {e}^{x} -  \frac{1}{x} +  log_ex  \right)}}}}

{ \large{ \longrightarrow { \rm{\frac{dy}{dx}  =  \frac{d}{dx}  {e}^{x}  -  \frac{d}{dx}  \frac{1}{x}  +  \frac{d}{dx}  log_ex}}}}

{ \large{ \longrightarrow { \rm{ \frac{dy}{dx} =  {e}^{x}  -  \frac{d}{dx}  {x}^{ - 1} +  \frac{1}{x}  }}}}

{ \large{ \longrightarrow{ \rm{ \frac{dy}{dx}  =  {e}^{x}  - [ -  {x}^{ - 1 - 1}  ] +  \frac{1}{x} }}}}

{ \large{ \longrightarrow{ \rm{ \frac{dy}{dx}  =  {e}^{x}  - [  -  {x}^{ - 2} ] +  \frac{1}{x} }}}}

<u>Hence</u><u>:</u><u> </u>

{ \large \longrightarrow{ \green{ \boxed{{ \rm{ \frac{dy}{dx}  =  {e}^{x}   +  \frac{1}{ {x}^{2} }  +  \frac{1}{x} }}}}}}

\:

<u>Learn</u><u> </u><u>More</u><u>:</u><u> </u>

{\pink{\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}}}

You might be interested in
(8u+6v)(5u - Bv)?????
ivolga24 [154]
8ubv+6bv2+40u+30vu hope it’s right
6 0
4 years ago
Which expressions are equal to the expression _2.7 _ 16.4?
Genrish500 [490]
This is just to easy the correct answer is A
8 0
3 years ago
Read 2 more answers
A bag contains 7 red marbles, 3 blue marbles and 5 green marbles. If three marbles
worty [1.4K]

Answer:

3.7%

Step-by-step explanation:

We know that from this situation, the probability of drawing a single green marble is 1/3. However, to find the probability of drawing 3 green marbles, we will need to do:

P= \frac{1}{3}* \frac{1}{3}*\frac{1}{3}

We get a probability of:

P= \frac{1}{27}

This converts to a percentage of:

\frac{1}{27}= 0.037 \\ 0.037*100= 3.7%

We get a percentage of 3.7%

8 0
3 years ago
Please help :( <br> Properties of Parallelograms
olga2289 [7]

Answer:

sinceramente no entiendo tu idioma.... sprry me encantaria poder ayudarte pero bvueno espero que consigas una respuesta rapida y efectiva no como la mia que fue tan inutil bye

Step-by-step explanation:

7 0
4 years ago
<img src="https://tex.z-dn.net/?f=%285%20-%20x%29%28x%20-%203%29" id="TexFormula1" title="(5 - x)(x - 3)" alt="(5 - x)(x - 3)" a
professor190 [17]

Answer:

15x

Step-by-step explanation:

because i multiply i side by side and copy the variable

3 0
3 years ago
Read 2 more answers
Other questions:
  • Miss Hoffman gave 90-cent tip to a waitress for serving a meal costing $6.00 what percent of the bill is her tip?
    13·1 answer
  • If a wheel has a radius of 3 in how far will it travel in 30 revolutions?
    7·1 answer
  • I’ll make u the brainliest if right
    11·1 answer
  • All whole numbers are rational numbers.
    8·1 answer
  • Find the Mid point of (-5,-9) (-7,-4)
    8·1 answer
  • Two consecutive Intergers sum to 33
    8·1 answer
  • A cylinder has a base diameter of 6 feet and a height of 2 feet. What is its volume
    9·1 answer
  • How many 1/3 of a hour to make a hour?
    8·1 answer
  • 7 1/8 × 5 2/3<br><br>O 35 1/12 <br>O 40 3/8<br>O 35 3/8​
    15·1 answer
  • Need help on this one please
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!