1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BlackZzzverrR [31]
4 years ago
8

What is the probability of making a type ii error when the machine is overfilling by .5 ounces (to 4 decimals)?

Mathematics
1 answer:
abruzzese [7]4 years ago
7 0
Part A

The probability of making a type ii error is equal to 1 minus the power of a hypothesis testing.

The power of a hypothesis test is given by:

\beta(\mu')=\phi\left[z_{\alpha/2}+ \frac{\mu-\mu'}{\sigma/\sqrt{n}} \right]-\phi\left[-z_{\alpha/2}+ \frac{\mu-\mu'}{\sigma/\sqrt{n}} \right]

Given that the machine is overfilling by .5 ounces, then \mu-\mu'=-0.5, also, we are given that the sample size is 30 and the population standard deviation is  = 0.8 and α = 0.05

Thus,

\beta(16.5)=\phi\left[z_{0.025}+ \frac{-0.5}{0.8/\sqrt{30}} \right]-\phi\left[-z_{0.025}+ \frac{-0.5}{0.8/\sqrt{30}} \right] \\  \\ =\phi\left[1.96+ \frac{-0.5}{0.1461} \right]-\phi\left[-1.96+ \frac{-0.5}{0.1461} \right] \\  \\ =\phi(1.96-3.4233)-\phi(-1.96-3.4233) \\  \\ =\phi(-1.4633)-\phi(-5.3833)=0.07169

Therefore, the probability of making a type II error when the machine is overfilling by .5 ounces is 1 - 0.07169 = 0.9283



Part B:

From part A, the power of the statistical test when the machine is overfilling by .5 ounces is 0.0717.
You might be interested in
Whats the prime factorization for 59. Also whats the factorization for 61. Thank chu!
Ainat [17]
1,59 and 1,61 are the prime factoratiozons for 59 and 61

8 0
4 years ago
What is the solution to 3^2x =1/3
Anna11 [10]
The answer in fraction form is 1/27

x = 1/27
6 0
3 years ago
Pls help i will give you a 5 star rating
docker41 [41]

                                           Question # 1

Given the expression

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3

Follow the PEMDAS order of operations

\mathrm{Calculate\:within\:parentheses}\:\left(5+3\cdot \:2\right)\::\quad 11

=6^2\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:6^2\::\quad 36

=36\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:2^3\::\quad 8

=36\div \:3+11-8

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:36\div \:3\::\quad 12

=12+11-8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:12+11-8\::\quad 15

=15

Therefore,

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3=15

                                            Question # 2

Given the expression

\frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}

as

4+3^2-\frac{15}{5}

=4+9-\frac{15}{5}      ∵3^2=9

\mathrm{Add\:the\:numbers:}\:4+9=13

=-\frac{15}{5}+13

and

\left(2^4-5\cdot \:3\right)^2

=\left(16-5\cdot \:3\right)^2   ∵ 2^4=16

\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15

=\left(16-15\right)^2

\mathrm{Subtract\:the\:numbers:}\:16-15=1

=1^2

\mathrm{Apply\:rule}\:1^a=1

=1

Thus the equation \frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}  becomes

=\frac{-\frac{15}{5}+13}{1}

\mathrm{Divide\:the\:numbers:}\:\frac{15}{5}=3

=\frac{-3+13}{1}

\mathrm{Apply\:rule}\:\frac{a}{1}=a

=-3+13

\mathrm{Add/Subtract\:the\:numbers:}\:-3+13=10

=10

Therefore,

\frac{4+3^2-\frac{15}{5}}{\left(2^4-5\cdot \:3\right)^2}=10

                                                       Question # 3

Given the expression

ab-c^2+2b

Putting a = 2, b = 4, and c = 1 in the expression

=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(1\right)^2\::\quad 1

=\left(2\right)\left(4\right)-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(4\right)\::\quad 8

=8-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(4\right)\::\quad 8

=8-1+8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:8-1+8\::\quad 15

=15

Therefore,

ab-c^2+2b=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)=15

                                                     Question # 4

Given the expression

4d^3+2e\div \:f+de

Putting d = 2, e = 3, and f = 6 in the expression

=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(2\right)^3\::\quad 8

=4\cdot \:8+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:4\cdot \:8\::\quad 32

=32+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(3\right)\div \:6\::\quad 1

=32+1+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(3\right)\::\quad 6

=32+1+6

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:32+1+6\::\quad 39

=39

Therefore,

4d^3+2e\div \:\:f+de=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)=39

7 0
4 years ago
The distance traveled by a small car varies directly to the amount of fuel it consumes. The small car traveled 120 miles on 3 ga
Mazyrski [523]
Anakaoanshagavavsbhsjsjsjss
8 0
3 years ago
One day, thirteen babies are born at a hospital. assuming each baby has an equal chance of being a boy or girl, what is the prob
Nadya [2.5K]

Using the binomial distribution, there is a 0.9983 = 99.83% probability that at most eleven of the thirteen babies are girls.

<h3>What is the binomial distribution formula?</h3>

The formula is:

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

C_{n,x} = \frac{n!}{x!(n-x)!}

The parameters are:

  • x is the number of successes.
  • n is the number of trials.
  • p is the probability of a success on a single trial.

For this problem, the values of the parameters are:

p = 0.5, n = 13

The probability that at most eleven of the thirteen babies are girls is:

P(X \leq 11) = 1 - P(X > 11)

In which

P(X > 11) = P(X = 12) + P(X = 13)

Then:

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 12) = C_{13,12}.(0.5)^{12}.(0.5)^{1} = 0.0016

P(X = 13) = C_{13,13}.(0.5)^{13}.(0.5)^{0} = 0.0001

So:

P(X > 11) = P(X = 12) + P(X = 13) = 0.0016 + 0.0001 = 0.0017

P(X \leq 11) = 1 - P(X > 11) = 1 - 0.0017 = 0.9983

0.9983 = 99.83% probability that at most eleven of the thirteen babies are girls.

More can be learned about the binomial distribution at brainly.com/question/24863377

#SPJ1

8 0
2 years ago
Other questions:
  • What value of c makes the equation true?<br><br><br><br> −3−3/4(c−4)=5/4
    15·1 answer
  • 294 simplify the radicals
    14·1 answer
  • PLEASE HELP URGENT!! TIMED WILL GIVE 20 PTS What is the area of parallelogram ABCD?
    7·2 answers
  • Suppose that a recent poll found that 40% of adults in a certain country believe that the overall state of moral values is poor.
    14·1 answer
  • HELPPP!!! The probability distribution for a
    12·1 answer
  • Which statement about the function is true?
    10·1 answer
  • Which equation has x = 4 as the solution? log Subscript 4 Baseline (3 x + 4) = 2 log Subscript 3 Baseline (2 x minus 5) = 2 log
    7·2 answers
  • A study of 800 homeowners in a certain area showed that the average value of the homes was $82,000, and the standard deviation w
    5·1 answer
  • Please help!!!!!!!!!!!!
    13·2 answers
  • Find the surface area of the rectangular prism.<br> 4 km<br> 5 km<br> 2 km
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!