Answer:
80.1 grams
Explanation:
Find the molar mass of CH3OH first by using the periodic table values.
12.011 g/mol C + (1.008*3 g/mol H) + 15.999g/mol O + 1.008 g/mol H
=32.042 so that is the molar mass
Now that you have 2.50 moles of CH3OH, you can calculate the mass in g
2.50molCH3OH * (32.042g CH3OH / 1 mol CH3OH) = 80.105
32.042g / 1 mol is the same as 32.042 g/mol
Since there are 3 sig figs in the problem (2.50 has 3 sig figs), you round to 80.1 g CH3OH
Answer:
The energy transferred between samples of matter because of a difference in their temperatures is called a. heat.
Explanation:
The first law of thermodynamics establishes that when two bodies with different temperatures are put in contact they will find thermic equilibrium to a final temperature by transferring heat. Thus the correct answer is (a).
Thermochemistry is the study of the transformations of heat energy on the chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. And temperature is the measure of the heat.
Halogens are a group of elements consisting of Fluorine, Chlorine, Bromine, Iodine and Astatine. In their ionic form, they have a superscript of -1, for example, chloride ion is Cl-1. These means that they readily accept one electron in order to achieve the Octet rule. The Octet rule states that each atom must contain 8 electrons in their valence shell for it to be stable. The most stable set of elements are the noble gases. Because they already fulfill the Octet rule, they no longer take part in reactions. Halogens are also very electronegative, meaning, they attract more electrons toward them. This is also a consequence of the Octet rule.
From the choices, the answers would be:
<span>they require only one electron to complete their outer shell
they have a high electronegativity</span>
The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
Doping Se (group VI elements) with P(group V)elements would produce a P-TYPE semiconductor with HIGHER conductivity compared to pure Se
the reason is P dopant will introduce holes in the Se as P has lesser valence electron