x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work
Answer:
-573.67
Explanation:
whenever energy is released in a chemical reaction, we would then expect the delta H of the reaction to be negative because the reaction is an exothermic reaction.
now we have that 2.81 moles of fuel when it combusts would releases 1612kJ of energy
thus, 1 mole will release 1612/2.81 = -573.67kJ of heat
Therefore the delta H of the reaction = -573.67 kJ/mol
Answer:
The Dehydrohaogenation of 1-bromo propane with alcoholic KOH gives propene which on again hydrohalogenation with HBr gives 2-bromo propane due to Markonikove's rule for addition.
Explanation:
Answer:
0.6378 M
Explanation:
Molarity is defined by Moles per liter.
Plugging the given information in, we get (14.968 moles)/(23.47 L) which comes out to be about 0.6378 M
The answer is “B” because I just answered it