Answer:

Step-by-step explanation:
![\frac{15}{\sqrt{31} - 4}\\\\=\frac{15}{\sqrt{31} - 4} \times \frac{\sqrt{31} + 4}{\sqrt{31}+ 4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ rationalizing \ the \ denominator \ ]\\\\=\frac{15( \sqrt{31} + 4 )}{(\sqrt{31})^2 - (4)^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (a-b)(a+b) = a^2 - b^2 \ ]\\\\=\frac{15 ( \sqrt{31} + 4)}{31 - 16}\\\\=\frac{15 (\sqrt{31} + 4)}{15}\\\\= \sqrt{31} + 4](https://tex.z-dn.net/?f=%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B31%7D%20%2B%204%7D%7B%5Csqrt%7B31%7D%2B%204%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%20%5B%20%20%5C%20rationalizing%20%5C%20the%20%5C%20denominator%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%28%20%5Csqrt%7B31%7D%20%2B%204%20%29%7D%7B%28%5Csqrt%7B31%7D%29%5E2%20-%20%284%29%5E2%7D%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5B%20%5C%20%28a-b%29%28a%2Bb%29%20%3D%20a%5E2%20-%20b%5E2%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%20%5Csqrt%7B31%7D%20%2B%204%29%7D%7B31%20-%2016%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%5Csqrt%7B31%7D%20%2B%204%29%7D%7B15%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B31%7D%20%2B%204)
Answer:
6 - 4i
Step-by-step explanation:
-4 + i = 10 - 5i
<u>+4 +4 </u>
i = 14 + 5i
<u>-5i -5i </u>
-4i = 14
i = -3.5
There are four aces, 12 face cards and 4 7s in a standard 52 card deck. The probability of getting an ace on the first draw is 4/52 or 1/13. For the second draw there are now 51 cards in the deck (assuming the draws are without replacement), so the probability of getting a face card is 12/51. Given an ace and a face card on the first two draws, the probability of a 7 on the third draw is 4/50 or 2/25. The probability of getting all three is 1/13*12/51*2/25.
666 views
Related Questions (More Answers Below)
![(\sqrt[5]{x^{7}})^{3}=(x^{\frac{7}{5}})^{3}=x^{\frac{7\cdot3}{5}}=x^{\frac{21}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7Bx%5E%7B7%7D%7D%29%5E%7B3%7D%3D%28x%5E%7B%5Cfrac%7B7%7D%7B5%7D%7D%29%5E%7B3%7D%3Dx%5E%7B%5Cfrac%7B7%5Ccdot3%7D%7B5%7D%7D%3Dx%5E%7B%5Cfrac%7B21%7D%7B5%7D%7D)
The root is equivalent to a fractional power with that number as the denominator. Otherwise, the rules of exponents apply.
Answer:
can u help answer mine
Step-by-step explanation: