Answer:
A
Explanation:
a statement that can be used to predict the motions of two objects only under special conditions
At the frequency of 5 MHz, the period of the oscillations is 1/5meg. That's a period of 1/5 microsecond.
There are 5 full cycles in one full microsecond, and there are 2.5 full cycles in a 0.5 us pulse.
You'll have to decide for yourself how damped a pulse of 2.5 cycles is, because the parameters of the definition are corrupted in the question.
I would think 2.759kmockinbirds if you consider mockingbirds equal to a metre and kmockinbird to kilometres
To solve this problem, we must imagine that Jim’s initial
position, the position of the rock, and Jim’s final position all connects to
form a triangle. Now we can imagine that the triangle is a right triangle with
the 90° angle on the initial position.
The angle of 30° is directly opposite to the length of his
total stride while the width of the river is the side adjacent to the angle.
Therefore can use the tan function to solve for the width of the river:
tan θ = opposite side / adjacent side
tan 30 = total stride distance / width of river
where total stride distance = 65 * 0.8 = 52 m
width of river = 52 m / tan 30
<span>width of river = 90.07 m</span>
From the basic "heat lost by hot object=heat gained by colder object" principle, we have
m1c1ΔT1=m2c2ΔT2
where m1= 1kg
m2=4kg
c1=900J/kg k
c2=4200J/kg k
With this information at hand we have
m1c1(90-T)=m2c2(T-25)
after substituting the given values we can find that
T=28.3^{0}c