The potential energy of the lemming is 1.53 J
Explanation:
The potential energy (PE) of an object is the energy possessed by the object due to its position in the Earth's gravitational field, and it is given by:
where:
m is the mass of the object
is the acceleration of gravity
h is the height of the object relative to the ground
In this problem:
m = 0.0780 kg is the mass of the lemming
We want to find the potential energy when the height is
h = 2.00 m
Therefore, we find:
Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
electric field lines are graphical presentation of electric field intensity
It is the graphical way to represent the electric field variation
If we draw the tangent to electric field line then it will give the direction of net electric field at that point
So whenever we draw the electric field lines of a charge distribution then it will always follow this basic properties
here we will always follow these basic properties of field lines
now as we can see that here two positive charges are placed nearby so the electric field must be like it can not intersect at any point because at intersection of two lines the direction of electric field not defined
As we have two directions of tangents at that point
So here the incorrect presentation is the intersection of two field lines which is not possible
Answer:
b) Nothing will happen, the sea saw will still be balanced.
Explanation:
b) Nothing will happen, the sea saw will still be balanced.
Reason:-
When two kids are balanced, the sum of torques on the seesaw will be zero.
if each kid, reduces their distances by half, then the torque of each kid will be half and the sum of torque of each on the seesaw will be zero.
Therefore the seesaw is balanced
Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :
So, the hayride will cover a distance of 68.18 m.
Answer:
Fractional error = 0.17
Percent error = 17%
F = 112 ± 19 N
Explanation:
Plug in the values to find the force:
F = (3.5 kg) (20 m/s)² / (12.5 m) = 112 N
Find the fractional error:
ΔF/F = Δm/m + 2Δv/v + Δr/r
ΔF/F = 0.1/3.5 + 2(1/20) + 0.5/12.5
ΔF/F = 0.17
Multiply by 100% to find the percent error:
ΔF/F × 100% = 17%
Solve for the absolute error:
ΔF = 0.17 × 112 N = 19 N
Therefore, the force is:
F = 112 ± 19 N