M = mass of the whale = 1000 kg
m = mass of the seal = 200 kg
V = initial velocity of whale before collision with the seal = 6.0 m/s
v = initial velocity of the seal before collision with the whale = 0 m/s
V' = final velocity of two sea creatures after collision = ?
Using conservation of momentum
M V + m v = (M + m) V'
inserting the above values in the equation
(1000 kg) (6.0 m/s) + (200 kg) (0 m/s ) = (1000 kg + 200 kg) V'
6000 kgm/s + 0 kgm/s = (1200 kg) V'
V' = (6000 kgm/s ) /(1200 kg)
V' = 5 m/s
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.
The average speed is 42.7 m/s
Explanation:
The speed of an object in uniform motion (=moving at constant speed) is given by the equation:

where
v is the speed
d is the distance
t is the time
For the car in this problem, we have:
d = 2560 m (distance)
t = 60 s (time)
Solving the equation, we find the average speed:

Learn more about speed:
brainly.com/question/8893949
#LearnwithBrainly
Answer:
a
Explanation:
The bar magnet moves downward with respect to the wire loop, so that the number of magnetic field lines going through the loop decreases with time. This causes an emf to be induced in the loop, creating an electric current.
in other words, the magnets motion creates a current in the loop