<span>Answer:
So it gets to the top of the ramp and stops. The parallel force pushing it down the ramp is mg sin θ, but for it to move, the frictional force must be overcome. This frictional force is μmg cos θ, where μ is the coefficient of static friction. For movement, then,
mg sin θ > μmg cos θ ==> tan θ > μ ==> θ > arctan 0.5 = 26.565° ==> θ = 27°</span>
I don't think an object can exert a force on itself.
Try it: Get up on a skateboard, and see if you can do anything to yourself that makes you start moving ... without touching anything else.
It'll be easy to tell if you succeed. If you actually do exert an unbalanced force on yourself, then you'll begin to accelerate.
Answer:
<h3>The answer is 2.51 s</h3>
Explanation:
The time taken can be found by using the formula

d is the distance
v is the velocity
From the question we have

We have the final answer as
<h3>2.51 s</h3>
Hope this helps you
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz