Answer:
P V = N R T ideal gas equation
P2 / P1 = T2 / T1 where the other variables are constant
P2 = (T2 / T1) * P1 = (313 / 293) * 40 psi = 42.7 psi
Answer:
You input potential energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this is kind of potential energy is specifically called elastic potential energy.
R1 + R4 = 1430 + 1350 = 2780 = R14 series combination of R1 & R4
R2 + R5 = 1350 + 1150 = 2500 = R25
The circuit has been reduced to 3 resistors in parallel
R314 = 2780 * 1100 / (2780 + 1100) = 788 this is the resistance of the parallel combination of R14 and R3
R31425 = 2500 * 788 / (2500 + 788) = 599 which is the equivalent of the circuit - you can also use the formula for 3 resistors in parallel but this seems simpler
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.
Answer:
42m/s
6.06s
Explanation:
To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

θ: angle = 45°
vo: initial velocity
g: gravitational constant = 9.8m/s^2
x_max: max distance = 180 m
t_max: max time
by replacing the values of the parameters and do vo the subject of the first formula you obtain:

with this value of vo you calculate the max time:

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s
- - - - - - - - - - - - -- - - - - - - - - - - - - -
TRANSLATION:
Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:
θ: ángulo = 45 °
vo: velocidad inicial
g: constante gravitacional = 9.8m / s ^ 2
x_max: distancia máxima = 180 m
t_max: tiempo máximo
reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:
con este valor de vo usted calcula el tiempo máximo:
por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s