A mature thunderstorm will contain both updraft and downdrafts. The given statement is true.
When the cumulus cloud becomes very large, the water in it becomes large and heavy. Raindrops start to fall through the cloud when the rising air can no longer hold them up. Meanwhile, cool dry air starts to enter the cloud. Because cool air is heavier than warm air, it starts to descend in the cloud (known as a downdraft). The downdraft pulls the heavy water downward, making rain.
This cloud has become a cumulonimbus cloud because it has an updraft, a downdraft, and rain. Thunder and lightning start to occur, as well as heavy rain. The cumulonimbus is now a thunderstorm cell.
-identifies an electric charge
-it can identify its polarity (positive or negative) if you compare it to a charge that you already know
-can identify the magnitude of a charge (how big of a charge it is)
Answer:
E = 3456 J
Explanation:
The electrical energy expended in a resistor can be easily calculated by using the following formula:

where,
E = Energy Expended = ?
I = current through 5 ohm resistor = 2.4 A
R = Resistance = 5 ohms
P = Electrical Power = VI
Since,
V = IR (Ohm's Law)
Therefore,
P = (IR)(I) = I²R = (2.4 A)²(5 ohms) = 28.8 Watt
t = time taken = (2 min)(60 s/1 min) = 120 s
Therefore,
E = (28.8 Watt)(120 s)
<u>E = 3456 J</u>
Answer:
Explanation:
Let's look at a mathematical representation of this. The equation for tis is just a souped up version of Newton's 2nd Law:
F - f = ma. It an object is moving at a constant speed, the acceleration of that object is 0. That changes this equation to
F = f which states that the applied Force equals the frictional force, choice a.
Answer: a) 0.315 (V/L)
Explanation:
From Conservation of angular momentum, we know that
L1 = L2 ,
Therefore MV L/2 = ( Irod + Ib) x W
M/4 x V x L/2 = (M (L/2)^2 + 1/3xMxL^2) x W
M/8 X VL = (ML^2/16 + ML^2 /3 )
After elimination we have,
V/8 = 19/48 x L x W
W = 48/8 x V/19L = 6/19 x V/L
Therefore W = (0.136)X V/L