Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
True, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
<h3>Relationship between dielectric material and electric field</h3>
The electric field in a capacitor separates the negative and positive charges in the dielectric material, this causes an attractive force between each plate and the dielectric.
The dielectric material can store electric energy due to its polarization in the presence of external electric field, which causes the positive charge to store on one electrode and negative charge on the other.
Thus, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
Learn more about dielectric material here: brainly.com/question/17090590
Answer: True
Explanation:
A photo detector that can respond to the entire rang of visible light can be design, it is true.
Photo detector is a device in an optical receiver which receives optical signals and convert it to electric signal. It is the key device position in front of the optical receiver.
On the change in potential energy
Answer:
The upper motor neurons synapse in the spinal cord connect with anterior horn cells of lower motor neurons, usually via interneurons. The anterior horn cells are the cell bodies of the lower motor neurons and are located in the grey matter of the spinal cord.
Explanation:
Interneurons are the central nodes of neural circuits, enabling communication between the upper motor neurons, sensory or motor neurons located in the brain and spinal cord and they send signals to lower motor neurons or central nervous system (CNS) in the brain stem and spinal cord . When they get a signal from the upper motor neurons, they send another signal to your muscles to make them contract. They play vital roles in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain.
Renshaw cells are among the very first identified interneurons. They are excited by the axon collaterals of the motor neurons. In addition, Renshaw cells make inhibitory connections to several groups of motor neurons.