Answer:
vf = v₁/3 + 2v₂/3
Explanation:
Using the law of conservation of linear momentum,
momentum before impact = momentum after impact
So, Mv₁ + 2Mv₂ = 3Mv (since the railroad cars combine) where v₁ = initial velocity of first railroad car, v₂ = initial velocity of the other two coupled railroad cars, and vf = final velocity of the three railroad cars after impact.
Mv₁ + 2Mv₂ = 3Mvf
dividing through by 3M, we have
v₁/3 + 2v₂/3 = vf
vf = v₁/3 + 2v₂/3
Answer:
(a) The force between them quadruples
Explanation:
According to coulomb's law, initial force between the two charged objects is given as;

where;
k is coulomb's constant
q₁ is the charge on the first object
q₂ is the charge on the second object
r is the distance between the two objects
When the charges on both objects are doubled, then;
q₁ = 2q₁
q₂ = 2q₂
Force between the two charged objects will become

Therefore, the force between them quadruples
I believe the answer is B: It’s moving at a constant speed.
Answer:
I think the 1st statement is right.
Explanation:
Wind patterns doesn't stay the same.
Waves don't follow the same patterns.
Waves move further up the shore.
I didn't hear about "waves adding" before..so i guess 1st statement is right.
Answer:
is there any pictures or diagrams that i could use to base this question off of
Explanation: