1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
3 years ago
15

The magnetic field at 8 cm distance from a long straight wire, carrying is 0.2x10^-5 T. How much is the electric current in the

wire?
Physics
1 answer:
FrozenT [24]3 years ago
4 0

Answer:

The electric current in the wire is 0.8 A

Explanation:

We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B=\frac{2\pi*a }{u*I}

B= Magnetic field due to a straight and long wire that carries current

u= Free space permeability

I= Electrical current passing through the wire

a  = Perpendicular distance from the wire to the point where the magnetic field is located

Magnetic Field Calculation

We cleared (I) of the formula (1):

I=\frac{2\pi*a*B }{u} Formula(2)

B=0.2*10^{-5}  T = 0.2*10^{-5} \frac{weber}{m^{2} }

a  =8cm=0.08m

u=4*\pi *10^{-7} \frac{Weber}{A*m}

We replace the known information in the formula (2)

I=\frac{2\pi*0.08*0.2*10^{-5}  }{4\pi *10x^{-7} }

I=0.8 A

Answer: The electric current in the wire is 0.8 A

You might be interested in
Figure 1 shows the motion of three balls. The curved paths followed by balls B and Care examples of
nlexa [21]

Answer:

in brainly app there is an option that you can upload graph, plot or diagram related to your question. you can use that app to show diagram related to your question so that one can answer your question in better way

7 0
3 years ago
Sometimes a person cannot clearly see objects close up or far away. To correct this type of vision, bifocals are often used. The
Rudik [331]

Answer:

1)   P₁ = -2 D,   2) P₂ = 6 D

Explanation:

for this exercise in geometric optics let's use the equation of the constructor

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where f is the focal length, p and q are the distance to the object and the image, respectively

1) to see a distant object it must be at infinity (p = ∞)

          \frac{1}{f_1} = \frac{1}{q}

           q = f₁

2) for an object located at p = 25 cm

            \frac{1}{f_2} = \frac{1}{25} + \frac{1}{q}

We can that in the two expressions we have the distance to the image, this is the distance where it can be seen clearly in general for a normal person is q = 50 cm

we substitute in the equations

1) f₁ = -50 cm

2)  

        \frac{1}{f_2} = \frac{1}{25} + \frac{1}{50}

        \frac{1}{f_2} = 0.06

         f₂ = 16.67 cm

the expression for the power of the lenses is

          P = \frac{1}{f}

where the focal length is in meters

           

1)       P₁ = 1/0.50

        P₁ = -2 D

2)     P₂ = 1 /0.16667

        P₂ = 6 D

4 0
2 years ago
If a non-rotating object has no acceleration, then we can say for certain that it is:__________
EleoNora [17]

We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.

<h3>What is mechanical equilibrium?</h3>

There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.

To learn more about mechanical equilibrium, visit:

<u>brainly.com/question/14246949</u>

#SPJ4

6 0
1 year ago
Consider electromagnetic waves in free space. What is the wavelength of a wave that has the following frequencies? (a) 4.10 x 10
navik [9.2K]

Explanation:

To find the answer use the equation speed of light=wavelength multiplied by frequency (c=lambda*f) by substituting the value for the frequency the the speed of light

7 0
3 years ago
A skier (m=59.0 kg) starts sliding down from the top of a ski jump with negligible friction and takes off horizontally. If h = 3
marissa [1.9K]

Answer:

35.20 m

Explanation:

By the law of conservation of energy we have,

mg(H-h)=\frac{1}{2}mv^2

g(H-h)=\frac{1}{2}v^2

\Rightarrow H=\frac{v^2}{2g}+h

where m= mass of the skier, h= 3.00 m

D= horizontal distance=13.9 m

H= maximum height attained

Also, the horizontal distance covered by the skier is

D=vt

=v\frac{2g}{h}

\Rightarrow v^2=\frac{gD^2}{2h}

thus, height H in terms of D  is given by

H=\frac{D^2}{2h}+h

H=\frac{13.9^2}{2\times3}+3

H=35.20 m

4 0
3 years ago
Other questions:
  • A spring that is compressed 14.5 cm from its equilibrium position stores 2.99 J of potential energy. Determine the spring consta
    9·1 answer
  • The law of conservation of energy and describe the energy transformation that occur as you coast down a long hill on a bicycle a
    13·1 answer
  • Helen sees Andy at the dance that she crush on and decides to chase him down. Find speed if she runs 87.3m in 4.9s
    14·1 answer
  • Did the bigbang violate the law of conservation of energy and matter?
    11·1 answer
  • Monday Homework Problem 10.6 A simple generator is constructed by rotating a flat coil in a uniform magnetic field. Suppose we r
    6·1 answer
  • Help me pls! Will give brainliest <br><br> Which arrow correctly shows the flow of heat?
    15·1 answer
  • A cyclist slows down from 8m/s to 2m/s in 3 seconds. What is the<br> acceleration?
    11·2 answers
  • Radio waves travel 300,000,000 m/s. The frequency is 101,700,000. ehats the wavelength​
    15·1 answer
  • What is the nucleus of the atom
    14·2 answers
  • A student makes this statement before conducting an experiment on electromagnetic radiation: "We expect the laser to diffract wh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!