1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
2 years ago
13

Determine the whether the quadratic equation below has a maximum or minimum. y = 4x² – 3x - 43

Mathematics
2 answers:
SashulF [63]2 years ago
8 0

Answer:

Minimum

Need to know:

Derivative power rule: d/dx xⁿ = nxⁿ⁻¹

Derivative constant rule: d/dx c = 0

Step-by-step explanation:

A way to determine whether the quadratic equation has a maximum or a minimum is by graphing it.

If we look at the image below, we notice that the graph does not go to the bottom infinitely, but it keeps going up infinitely. This means there is a minimum to this graph.

Another way to determine this is through calculus.

First, we have to find the point of extremum

Find the derivative of the given equation

d/dx 4x² -  3x - 43

You can separate the terms and solve them individually

d/dx 4x² = 4(2)(x²⁻¹) = 8x

d/dx -3x = -3(1)(x¹⁻¹) = -3(1)(1) = -3

d/dx -43 = 0

y' = 8x - 3

Set y' to equal 0

8x - 3 = 0

Add 3 to both sides

8x - 3 = 0

    + 3   + 3

8x = 3

Divide both sides by 8

8x/8 = 3/8

x = 3/8

There is only one point of extremum

Now we have to test whether the equation changes from negative to positive or positive to negative

If it changes from negative to positive, that point is a minimum

If it changes from positive to negative, that point is a maximum

To find this, pick a number less than 3/8 and plug it in the place of x in the derivative equation. We'll use 0.

y' = 8(0) - 3 = -3

Now we will do the same for a number larger than 3/8. We'll use 1

y' = 8(1) - 3 = 5

Since the lesser side of 3/8 is negative and the larger side of 3/8 is positive, that means it changes from negative to positive. This point is a minimum.

Alex2 years ago
4 0
A minimum because the function is positive. Positive quadratic functions always concave upwards (in a “bowl-like” shape), creating a curve/minimum at the bottom.
You might be interested in
Pls help me I don’t get it
Minchanka [31]

Answer: C

Step-by-step explanation: Hope this help :D

4 0
3 years ago
Read 2 more answers
Which of the following is equivalent to 5/13^3
lys-0071 [83]

Answer:

.00227 or 5/2197

Step-by-step explanation:

following the basic rules of PEMDAS, we know that we have to solve for the exponent first.

so.... 5/2197

as a decimal, this is .00227...

8 0
4 years ago
How do you get the answer and sketch it to this graft
Katyanochek1 [597]
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
                       2(-4)
x = <u>-16 +/- √(256 - 224)</u>
                     -8
x = <u>-16 +/- √(32)
</u>               -8<u>
</u>x = <u>-16 +/- 5.66
</u>              -8<u>
</u>x = <u>-16 + 5.66</u>      x = <u>-16 - 5.66
</u>             -8                         -8<u>
</u>x = <u>-10.34</u>            x = <u>-21.66</u>      
          -8                         -8
x = 1.2925           x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u>                      <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
                 4
x = <u>8 +/- √(-8)</u>
             4
x = <u>8 +/- √(8 × (-1))</u>
                 4
x =<u> 8 +/- √(8)√(-1)</u>
                 4
x = <u>8 +/- 2.83i</u>
              4
x = 2 +/- 1.415i
x = 2 + 1.415i      x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
                      2(-2)
x = <u>-16 +/- √(256 - 192)</u>
                   -4
x = <u>-16 +/- √(64)</u>
               -4
x = <u>-16 +/- 8</u>
            -4
x = <u>-16 + 8</u>      x = <u>-16 - 8</u>
           -4                   -4
x = <u>-8</u>              x = <u>-24</u>
      -4                     -4
x = 2                x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
5 0
3 years ago
An egg carton holds 12 eggs. A breakfast buffet uses 96 eggs by 8am. When the buffet ends at 10:30, a total of 156 eggs were use
Kaylis [27]

Answer:

5 cartons of eggs were used.

Step-by-step explanation:

Since there are a total of 156 eggs used, and 96 were already used, you subtract 156 - 96 = 60. Since there 12 eggs in each carton, you divide 60 by 12 to get 5.

4 0
3 years ago
Express 28:7 in the form of n:1
mixas84 [53]

4:1 should be your answer I might be dumb‍♀️

5 0
4 years ago
Read 2 more answers
Other questions:
  • 11.) Write each ratio as a fraction in simplest form. Then explain its meaning. 1 point
    5·1 answer
  • What is -x-4=3/5x+4 ?
    7·1 answer
  • Show me step by step please help me I don’t know I got summer school
    7·1 answer
  • Ashley has $62, part of which she wants to use to pay back money she owes people. She owes $13 to her brother and she owes $39 t
    13·2 answers
  • What is the y- intercept of the line graphed on the grid (-2,7) (6,1)
    13·1 answer
  • What is the tangent ratio of KJL? (Question and answers provided in picture.)
    5·1 answer
  • Marvin's Tree Service purchased several spruce tree saplings.
    12·1 answer
  • Given the right triangle, what should be the measurment for the hypotenuse?
    11·1 answer
  • Anoheeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
    11·1 answer
  • 5. Suppose a system of equations was solved by elimination and the resulting equation was 0 = 3.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!