Answer:
hello your question lacks the required reaction pairs below are the missing pairs
Reaction system 1 :
A + B ⇒ D ![-r_{1A} = 10exp[-8000K/T]C_{A}C_{B}](https://tex.z-dn.net/?f=-r_%7B1A%7D%20%20%3D%2010exp%5B-8000K%2FT%5DC_%7BA%7DC_%7BB%7D)
A + B ⇒ U 
Reaction system 2
A + B ⇒ D 
B + D ⇒ U 
Answer : reaction 1 : description of the reactor system : The desired reaction which is the first reaction possess a higher activation energy and higher temperature is required to kickstart reaction 1
condition to maximize selectivity : To maximize selectivity the concentration of reaction 1 should be higher than that of reaction 2
reaction 2 :
description of reactor system : The desired reaction i.e. reaction 1 has a lower activation energy and lower temperatures is required to kickstart reaction 1
condition to maximize selectivity:
to increase selectivity the concentration of D should be minimal
Explanation:
Reaction system 1 :
A + B ⇒ D ![-r_{1A} = 10exp[-8000K/T]C_{A}C_{B}](https://tex.z-dn.net/?f=-r_%7B1A%7D%20%20%3D%2010exp%5B-8000K%2FT%5DC_%7BA%7DC_%7BB%7D)
A + B ⇒ U 
the selectivity of D is represented using the relationship below
hence SDu = 1/10 * 
description of the reactor system : The desired reaction which is the first reaction possess a higher activation energy and higher temperature is required to kickstart reaction 1
condition to maximize selectivity : To maximize selectivity the concentration of reaction 1 should be higher than that of reaction 2
Reaction system 2
A + B ⇒ D 
B + D ⇒ U 
selectivity of D

hence Sdu = 
description of reactor system : The desired reaction i.e. reaction 1 has a lower activation energy and lower temperatures is required to kickstart reaction 1
condition to maximize selectivity:
to increase selectivity the concentration of D should be minimal
Can’t tell ya bc you didn’t list the answers
The grams of N2 that are required to produce 100.0 l of NH3 at STP
At stp 1moles = 22.4 l. what about 100.0 L of NH3
= 100 / 22.4 lx1 moles = 4.46 moles of NH3
write the reacting equation
N2+3H2 =2NH3
by use of mole ratio between N2 to NH3 which is 1:2 the moles of N2 =4.46/2 =2.23 moles of N2
mass = moles x molar mass
= 2.23moles x 28 g/mol = 62.4 grams
Answer:
Explanation:
Using at least three sentences,, explain the four stages involved in genetic engineering/gene cloning.
Stage 1: Isolation of the target gene
Stage 2: Insertation of the target gene
Stage 3: Introduction of the vector into a host
Stage 4: Amplification of the target gene by the host cell and screening