Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Answer: Butane will effuse more quickly because it has a smaller molar mass
Explanation:
Molar mass of C4H10 = 58.123 g/mole
Molar mass of I2 = 253.808 g/mole
Answer:
However, when formal units are used to measure length, the measurement can usually be read from a scale on a ruler or tape, which shows units of a particular size. Unit iteration involves knowledge of repeatedly placing identical tightly packing units so that there are no overlaps or gaps.
Explanation:
Answer: Calcium Sulphate Hemihydrate
The compound of calcium which is used for plastering of fractured bones is Plaster of Paris. It is also called as Calcium Sulphate Hemihydrate.