1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
3 years ago
14

A platinum resistance temperature detector has a resistance of 100.00 V at 0°C, 138.50 V at 100°C and 175.83 V at 200°C. What wi

ll be the nonlinearity error in °C at 100°C if the detector is assumed to have a linear relationship between 0 and 200°C?
Engineering
1 answer:
NISA [10]3 years ago
4 0

Answer:

  about 1.54 °C

Explanation:

The error will be the difference between the temperature interpreted from the resistance value and the actual temperature. The linear equation used to translate the resistance reading to temperature will be ...

  T = (200 -0)/(175.83 -100.00)(R -100.00)

  T ≈ 2.637479(R -100)

At the temperature of 100°C, the resistance value of 138.50 will be interpreted to be a temperature of ...

  T = 2.637479(138.50 -100) ≈ 101.543°C

This represents an error of 1.543°C relative to the actual temperature.

You might be interested in
For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are
kotegsom [21]

Answer:

B. The thickness of the heated region near the plate is increasing.

Explanation:

First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.

From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.

3 0
4 years ago
Consider a dip-coating process where a very long (assume infinitely long) wire(solid) with radius, ri, is being pulled verticall
Gekata [30.6K]

Answer:

See explaination and attachment.

Explanation:

Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.

The starting point of the Navier-Stokes equations is the equilibrium equation.

The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.

The second step is to relate the deviatoric stress to viscosity in the fluid.

The final step is to impose any special cases of interest, usually incompressibility.

Please kindly check attachment for step by step solution.

6 0
4 years ago
Which two events in Britain indirectly influenced the American Revolution?
AysviL [449]

Answer:

Explanation:The two events that indirectly influenced the American Revolution was the Passage of the English Bill of Rights and the English Declaration of Independence.

8 0
3 years ago
Read 2 more answers
Plssssssssss i need help rlly bad appreciate it pls
HACTEHA [7]

Answer:

but what's the question

7 0
3 years ago
Read 2 more answers
A Brayton cycle with regeneration using air as the working fluid has a pressure ratio of 7. The minimum and maximum temperatures
Alex777 [14]

Answer:

a) T_5 = 782.8 K

b)  W_cyc = 108.04 KJ/kg

c) n_th = 22.47 %

d) X_dest = 289.924 KJ/kg , X_exhaust = 126.6768 KJ/kg

Explanation:

Given:

- P_2 / P_1 = 7

- T_4 = 1150 K

- T_1 = 310 K

- n_s,comp = 0.75

- n_s,turb = 0.82

- R_air = 0.287 KJ/kg

Find:

- T_5 - Temperature of air at turbine exit ?

- W_cycle ?

- n_th ?

- X_dest , X_exhaust ?

Solution:

Assumptions:

1) The cycle operates at steady-state.  

2) Air is the working fluid and it behaves as an ideal gas.

3) The Brayton Cycle is modeled as as a closed cycle.

4) The combustor is replaced by a HEX. (External Combustion)

5) The compressor and turbine are not internally reversible.

6) Changes in kinetic and potential energies are negligible.

7) Air has variable specific heats.

8) The compressor and turbine are adiabatic.

Analysis:

- The efficiency of turbine is given by:

                            n_s,turb = (H_4 - H_5) / (H_4 - H_5,s)

- For H_4 and S_ 4 we have T_4 = 1150 K, use the ideal gas air property table:

          T_4 = 1150 K  -------------> S_4 = 3.129 KJ/kgK   ,  H_4 = 1219.25 KJ/kg

- For H_5s,  the enthalpy of the effluent from a hypothetical isentropic turbine. We can do this because  we know the values of two intensive variables: P_5 and S_5 = S_4. The key to using this information is the 2nd Gibbs equation:

          S_5,s,o = S_4,s,o + R_air*Ln(P_5 / P_4)

          S_5,s,o = 3.129 + 0.287*Ln(1 / 7) = 2.57054 KJ/kgK

- Now use the value S_5,s,o and ideal gas air property table and evaluate:

           S_5,s,o = 2.57054 KJ/kgK ---------> T_5,s = 698.6 K ,

                                                                      H_5s = 711.72 KJ/kg

                                                                     

- Now use the efficiency relation for turbine:

            H_5 =   H_4 - n_s,turb*(H_4 - H_5,s)

            H_5 = 1219.25 - 0.82*(1219.25-711.72)

            H_5 = 803.08 KJ/kg

- Using H_5 and ideal gas air property table and evaluate:

         H_5 = 803.08 KJ/kg -----------> T_5 = 782.8 K , S_5 = 2.6940 KJ/kg-K

- In order to determine the specific shaft work for the cycle, we need to determine the specific shaft work for the compressor  and for the turbine

             W_cyc = W_comp + W_turb

             W_cyc = H_1 - H_2 + H_4 - H_5

- The efficiency of compressor is given by:

                            n_s,comp = (H_1 - H_2,s) / (H_1 - H_2)

- For H_1 and S_ 1 we have T_1 = 310 K, use the ideal gas air property table:

          T_1 = 310 K  -------------> S_1 = 1.73498 KJ/kgK , H_1 = 310.24 KJ/kg

- For H_2s,  the enthalpy of the effluent from a hypothetical isentropic compressor. We can do this because  we know the values of two intensive variables: P_2 and S_2 = S_1. The key to using this information is the 2nd Gibbs equation:

          S_2,s,o = S_1,s,o + R_air*Ln(P_2 / P_1)

          S_2,s,o = 1.73498 + 0.287*Ln(7) = 2.29343 KJ/kgK

- Now use the value S_2,s,o and ideal gas air property table and evaluate:

           S_2,s,o = 2.29343 KJ/kgK ---------> T_2,s = 537.1 K ,

                                                                      H_2s = 541.34 KJ/kg

- Now use the efficiency relation for compressor:

            H_2 =   H_1 - (H_1 - H_2,s)/n_comp

            H_2 = 310.24 - (310.24-541.34)/0.72

            H_2 = 618.37 KJ/kg

Hence,

The work out for the cycle is:

            W_cyc = 310.24 - 618.37 + 1219.25 - 803.08

            W_cyc = 108.04 KJ/kg

- The thermal efficiency of a cycle is:

            n_th = W_cyc / Q_H

            Q_H = H_4 - H_3

- The effectiveness of re-generator is e:

            e = (H_3 - H_2) / (H_5 - H_2)

            H_3 = (H_5 - H_2)*e + H_2

            H_3 = (803.08 - 618.37)*0.7 + 618.37 = 738.43 KJ/kg

Hence,

            Q_H = 1219.25 - 738.43 = 480.81 KJ/kg

Finally,

             n_th = 108.04 / 480.81 = 22.47 %

- The amount of heat loss is given by:

              Q_L = H_6 - H_1

              H_6 = H_5 + H_2 - H_3 = 803.08 + 618.37 - 738.43 = 682.97 KJ/kg

              Q_L = 682.97 - 310.24 = 372.73 KJ/kg

- The amount of exergy destroyed for whole cycle:

              X_dest = T_L * ( Q_L / T_L - Q_H / T_H)

              X_dest = 310 * (372.73 / 310 - 480.81 / 1800)

              X_dest = 289.924 KJ/kg

- The amount of exergy of exhaust gasses:

              X_exhaust = H_6 - H_0 - T_L*(S_6 - S_o )

              X_exhaust = 682.97 - 310.24 - 310*(2.52861 - 1.73489 )

              X_exhaust = 126.6768 KJ/kg

4 0
3 years ago
Other questions:
  • What is a two stroke engine and what is a four stroke engine, please keep the definitions as simple as can be and please explain
    8·2 answers
  • Que es Broadcast Domains?
    15·1 answer
  • What do you enjoy most and least about engineering?
    15·2 answers
  • 1. (1 points) What is the name of the drinking water supply well? a. VA1; b. VA24; c. VA19; d. VA40; e. VA18; 2. (1 points) What
    11·1 answer
  • Q.17) A 50-acre catchment containing cropland is converted ot a Qatar mail
    13·1 answer
  • After cutting a PVC pipe you should use a<br> to debure the pipe
    7·1 answer
  • We have a credit charge that is trying to process but we do not remember signing up and email login is not working? Is there a w
    8·1 answer
  • Using the method of joints, determine the force in each member of the truss shown in the image.
    14·1 answer
  • Which of the following is defined as the progression of Ideas leading to the final delivery of a product?
    5·1 answer
  • Do not use C++ pointers (this is not a topic of this course).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!