1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
7

Which two events in Britain indirectly influenced the American Revolution?

Engineering
2 answers:
AysviL [449]3 years ago
8 0

Answer:

Explanation:The two events that indirectly influenced the American Revolution was the Passage of the English Bill of Rights and the English Declaration of Independence.

Rainbow [258]3 years ago
6 0

Answer:

Here is your Answer

Explanation:

The English declaration of independence. American revolution was defeated in the revolutionary war of America. Parliament of British was not allowed to tax because it had no mm=embers to govern the body

Hope u like it

You might be interested in
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
Engineers will redesign their products when they find flaws. TRUE O False​
nataly862011 [7]

Answer:

true

Explanation:

6 0
3 years ago
Write equations used to calculate the diode reverse saturation current, the voltage at which diode goes into resistive behavior,
laiz [17]

Answer:

Diode equation for reverse saturation current

I_o = A\times e^{\frac{-Eg}{KT}} + B\times e^{\frac{-Eg}{2KT}}  

Voltage at which diode goes into Resistive region:V=-5 volts

Voltage at which high level injection occurs:Va=0.55 volt

Voltage at which avalanche multiplication occurs:V=5volts

Explanation:

we take here forward and reverse 0.7 volt and -5 volt  

As Diode current equation is express as

I_D = I_o \times (e^{\frac{V_D}{\eta V_T}} -1 )   ....................1

here I_D is total current through the diode and I_o is reverse saturated current and V_D is  voltage drop across diode and \eta is idealized factor and V_T is thermal voltage

so here we know that when Bios is forward than

V_D  = V_T     .................2

ans Bios is Reverse than  

V_D  = V_R      ..................3

so here

1.  diode reverse saturation current is express as

I_o = A\times e^{\frac{-Eg}{KT}} + B\times e^{\frac{-Eg}{2KT}}  

and

2. Voltage at which diode go into Reverse behavior will be

V_D  = V_R    = -5 volt

and

3. voltage at which high level injection occur that is

Va = 0.55 volt

and

4. voltage at which avalanche multiplication occurs is

Va = 5 volt

6 0
3 years ago
Consider an 8-car caravan, where the propagation speed is 100 km/hour, each car takes 1 minute to pass a toll both. The caravan
melamori03 [73]

Answer:

A. 36 minutes

B. 120 minutes

C.

i. 144 minutes

ii. 984 minutes

D. Car 1 is 1.67km ahead of Cat 2 when Car 2 passed the toll B.

E. 98.33km

Explanation

A.

Given

dAb = 10km

dBc = 10km

Propagation Speed = 100km/hr

Delay time = 1 minute

Numbers of cars = 8

Number of tolls = 3

Total End to End delay = Propagation delay + Transition delay

Calculating Propagation Delay

Propagation delay = Total Distance/Propagation speed

Total distance = 10km + 10km = 20km

So, Propagation delay = 20km/100km/hr

Propagation delay = 0.2 hour

                               

Translation delay = delay time* numbers of tolls * numbers of cars

Transitional delay = 1 * 3 * 8

Transitional delay = 24 minutes

Total End delay = 24 minutes + 0.2 hours

= 24 minutes + 0.2 * 60 minutes

= 24 minutes + 12 minutes

= 36 minutes

B.

Total End to End delay = Propagation delay + Transition delay

Calculating Propagation Delay

Propagation delay = Total Distance/Propagation speed

Total distance = 10km + 10km = 20km

So, Propagation delay = 20km/100km/hr

Propagation delay = 0.2 hour

                               

Translation delay = delay time* numbers of tolls ------ Cars traveling separately

Transitional delay = 1 * 3

Transitional delay = 3 minutes

Total End delay for one car = 3 minutes + 0.2 hours

= 3 minutes + 0.2 * 60 minutes

= 3 minutes + 12 minutes

= 15 minutes

Total End delay for 8 cars = 8 * 15 = 120 minutes

C.

Given

dAb = 100km

dBc = 100km

Propagation Speed = 100km/hr

Delay time = 1 minute

Numbers of cars = 8

Number of tolls = 3

i. Cars travelling together

Total End to End delay = Propagation delay + Transition delay

Calculating Propagation Delay

Propagation delay = Total Distance/Propagation speed

Total distance = 100km + 100km = 200km

So, Propagation delay = 200km/100km/hr

Propagation delay = 2 hours

                               

Translation delay = delay time* numbers of tolls * numbers of cars

Transitional delay = 1 * 3 * 8

Transitional delay = 24 minutes

Total End delay = 24 minutes + 2 hours

= 24 minutes + 2 * 60 minutes

= 24 minutes + 120 minutes

= 144 minutes

ii. Cars travelling separately

Total End to End delay = Propagation delay + Transition delay

Calculating Propagation Delay

Propagation delay = Total Distance/Propagation speed

Total distance = 100km + 100km = 200km

So, Propagation delay = 200km/100km/hr

Propagation delay = 2 hours

                               

Translation delay = delay time* numbers of tolls ------ Cars traveling separately

Transitional delay = 1 * 3

Transitional delay = 3 minutes

Total End delay for one car = 3 minutes + 2 hours

= 3 minutes + 2 * 60 minutes

= 3 minutes + 120 minutes

= 123 minutes

Total End delay for 8 cars = 8 * 123 = 984 minutes

D.

Distance = 100km

Time = 1 min/car

Car 1 is 1 minute ahead of car 2 --- at toll A and B

If car 1 leaves toll B after 10 minutes then cat 2 leaves after 11 minutes

Time delay = 11 - 10 = 1 minute

Distance = time * speed

= 1 minute * 100km/hr

= 1 hr/60 * 100 km/hr

= 100/60

= 1.67km

E.

Given

Distance = 100km

Distance behind = 1.67

Maximum value of dBc = 100km - 1.67km = 98.33km

The maximum distance that can be reached is 98.33km

7 0
4 years ago
Which of the following describes beta testing?
Sergio039 [100]

Answer:

What is Beta Testing? Beta testing is an opportunity for real users to use a product in a production environment to uncover any bugs or issues before a general release. Beta testing is the final round of testing before releasing a product to a wide audience.

3 0
3 years ago
Other questions:
  • Drag each tile to the correct box.
    15·1 answer
  • Consider a 0.15-mm-diameter air bubble in a liquid. Determine the pressure difference between the inside and outside of the air
    10·1 answer
  • A 100 ft long steel wire has a cross-sectional area of 0.0144 in.2. When a force of 270 lb is applied to the wire, its length in
    15·1 answer
  • Air at 40C flows over a 2 m long flat plate with a free stream velocity of 7 m/s. Assume the width of the plate (into the paper)
    9·1 answer
  • Determine how much concrete you will need for a slab which is 50 feet by 30 feet wide and 1 foot thick
    15·1 answer
  • A bronze bushing 60 mm in outer diameter and 40 mm in inner diameter is to be pressed into a hollow steel cylinder of 120-mm out
    8·1 answer
  • If the same type of thermoplastic polymer is being tensile tested and the strain rate is increased, it will: g
    14·1 answer
  • Anything you want to do in Hootsuite can be found in the ________, with the main workspace in the _________?
    15·1 answer
  • Design process 8 steps with definition​
    10·1 answer
  • The best grade of hardwood lumber that is generally available is _____​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!