Answer:
Absolute pressure , P(abs)= 433.31 KPa
Explanation:
Given that
Gauge pressure P(gauge)= 50 psi
We know that barometer reads atmospheric pressure
Atmospheric pressure P(atm) = 29.1 inches of Hg
We know that
1 psi = 6.89 KPa
So 50 psi = 6.89 x 50 KPa
P(gauge)= 50 psi =344.72 KPa
We know that
1 inch = 0.0254 m
29.1 inches = 0.739 m
Atmospheric pressure P(atm) = 0.739 m of Hg
We know that density of Hg =
P = ρ g h
P(atm) = 13.6 x 1000 x 9.81 x 0.739 Pa
P(atm) = 13.6 x 9.81 x 0.739 KPa
P(atm) =98.54 KPa
Now
Absolute pressure = Gauge pressure + Atmospheric pressure
P(abs)=P(gauge) + P(atm)
P(abs)= 344.72 KPa + 98.54 KPa
P(abs)= 433.31 KPa
Answer:
Different types of equipment are required for proper conditioning of air because every air conditional space faces some geometrical and environmental issues or problems. There are some different types of equipment used for conditioning of air that are air system, water system and air-water system. In many cases the air conditioning of the system varies with size of the equipment.
Answer:
D
Explanation:
To know which is most or least cost-effective, it's not enough to look at only the per day rate, or only the time to complete. You have to multiply them to get the total cost of the project.
![\left[\begin{array}{ccccc}&Cost\ per\ day\ (\$)&Time\ to\ complete\ (days)&Total\ cost\ (\$)\\Zoe&500&8&4000\\Greg&650&10&6500\\Orion&400&12&4800\\Jin&700&5&3500\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%26Cost%5C%20per%5C%20day%5C%20%28%5C%24%29%26Time%5C%20to%5C%20complete%5C%20%28days%29%26Total%5C%20cost%5C%20%28%5C%24%29%5C%5CZoe%26500%268%264000%5C%5CGreg%26650%2610%266500%5C%5COrion%26400%2612%264800%5C%5CJin%26700%265%263500%5Cend%7Barray%7D%5Cright%5D)
As you can see, Greg is the least cost-effective because he charges the most for the project.
Answer:
False I'm pretty sure sorry If its wrong