<u>Given information:</u>
Concentration of NaF = 0.10 M
Ka of HF = 6.8*10⁻⁴
<u>To determine:</u>
pH of 0.1 M NaF
<u>Explanation:</u>
NaF (aq) ↔ Na+ (aq) + F-(aq)
[Na+] = [F-] = 0.10 M
F- will then react with water in the solution as follows:
F- + H2O ↔ HF + OH-
Kb = [OH-][HF]/[F-]
Kw/Ka = [OH-][HF]/[F-]
At equilibrium: [OH-]=[HF] = x and [F-] = 0.1 - x
10⁻¹⁴/6.8*10⁻⁴ = x²/0.1-x
x = [OH-] = 1.21*10⁻⁶ M
pOH = -log[OH-] = -log[1.21*10⁻⁶] = 5.92
pH = 14 - pOH = 14-5.92 = 8.08
Ans: (b)
pH of 0.10 M NaF is 8.08
Answer:
Plate tectonics is the theory that Earth's outer shell is divided into several plates that glide over the mantle, the rocky inner layer above the core. The plates act like a hard and rigid shell compared to Earth's mantle. ... The lithosphere includes the crust and outer part of the mantle.
Explanation:
<h2>
Answer:</h2>
7 hydrogen atoms
<h2>
Explanation:</h2>
N<em><u>H4</u></em>C2<em><u>H3</u></em>02
In this problem we see the hydrogen atom twice, along with the numbers 4 and 3 next to them. (as shown above in bold & underlined)
So, in order to find how many there are in all you add both hydrogen atoms together-
H4+H3= H7
therefore, there are 7 hydrogen atoms in all
<span>The metal that would more easily lose an electron would be potassium. It is more reactive than sodium. Also, looking on the periodic table, </span><span>from top to bottom for groups 1 and 2, reactivity increases. So, it should be potassium. Hope this answers the question. Have a nice day.</span>