To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Given 3.72 g of P and 21.28g of Cl, converting these to moles: ( 3.72 g P)(mol P/30.97 g P) = 0.12 mol P (21.28 g Cl)(mol Cl/35.45 g Cl) = 0.60 mol Cl P:Cl = 0.12/0.60, therefore P: Cl =1/5 Therefore, PCl5 hope it helps
Answer: The new pressure is 3 psi.
Explanation:
Given:
= 12 psi, 
= ?, 
Formula used is as follows.

Thus, we can conclude that the new pressure is 3 psi.
Remember that any intersection of lines is a C, and that the number of hydrogens attached are the necessary to complet the 4 bonds.
1) CH3 - CH (OH) - CH (CH3) -CH3
2) CH3 - O - CH(CH3)-CH2 - CH3
I have used the parenthesis to indicate that the radical inside is in other branch, bonded by a single line -