Answer:
(A+B)(A+B)=A.A+B.A+A.B+B.B
Step-by-step explanation:
Given that matrices A and B are nxn matrices
We need to find (A+B)(A+B)
For understanding the multiplication of matrices let'take A is mxn and B is pxq matrices,we can multiple only when n=p,so our Ab matrices will be mxq.
We know that that in matrices AB is not equal to BA.
Now find
(A+B)(A+B)=A.A+B.A+A.B+B.B
So from we can say that (A+B)(A+B) is not equal to A.A+2B.A+B.B because AB is not equal to BA in matrices.
So (A+B)(A+B)=A.A+B.A+A.B+B.B
Answer: Here x = 9. This is the correct answer. Hooe it helps
Step-by-step explanation:
Answer:
P(A|D) and P(D|A) from the table above are not equal because P(A|D) = and P(D|A) =
Step-by-step explanation:
Conditional probability is the probability of one event occurring with some relationship to one or more other events
.
P(A|D) is called the "Conditional Probability" of A given D
P(D|A) is called the "Conditional Probability" of D given A
The formula for conditional probability of P(A|D) = P(D∩A)/P(D)
The formula for conditional probability of P(D|A) = P(A∩D)/P(A)
The table
↓ ↓ ↓
: C : D : Total
→ A : 6 : 2 : 8
→ B : 1 : 8 : 9
→Total : 7 : 10 : 17
∵ P(A|D) = P(D∩A)/P(D)
∵ P(D∩A) = 2 ⇒ the common of D and A
- P(D) means total of column D
∵ P(D) = 10
∴ P(A|D) =
∵ P(D|A) = P(A∩D)/P(A)
∵ P(A∩D) = 2 ⇒ the common of A and D
- P(A) means total of row A
∵ P(A) = 8
∴ P(D|A) =
∵ P(A|D) =
∵ P(D|A) =
∵ ≠
∴ P(A|D) and P(D|A) from the table above are not equal
Step-by-step explanation:
Answer:
See below.
Step-by-step explanation:
The x - 1 will move whole graph 1 unit to the right.
The 1/2 will stretch it horizontally by a factor 2.
The 2 will stretch it vertically by a factor 2.
The -7 translates it 7 units down.