1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
3 years ago
9

Please help me?

Mathematics
2 answers:
saul85 [17]3 years ago
6 0

2x + y = 3.....multiply by 2

x - 2y = -1

-----------------

4x + 2y = 6 (result of multiplying by 2)

x - 2y = -1

----------------so the answer is..........

C. 5x = 5

Firdavs [7]3 years ago
4 0
<span>2x + y = 3
a: 5
x - 2y = -1
a: 2
If equation one is multiplied by 2 and then the equations are added, the result is _____.

3x = 2 this is the answer
3x = 5
5x = 5</span>
You might be interested in
The sum of 6 consecutive odd numbers is 204. What is the fourth number in this sequence?
Korolek [52]

204 /6 = 34

29 +31 +33 + 35 +37 +39 = 207

4th number = 35

6 0
3 years ago
Read 2 more answers
Which construction is illustrated below?
Irina18 [472]
<span>A perpendicular to a given line from a point on the line is constructed in the given choices.</span>
8 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
I don't get what there asking.
Angelina_Jolie [31]

Answer:

86 adults and 270 children

Step-by-step explanation:

Let x = # of adult tickets;

then the number of children tickets is (356-x).

Write the total money equation (revenue equation)

   1.75*(356-x) + 2.25x = 666  dollars.

From the equation

  x = \frac{666-1.75*356}{2.25-1.75} = 86

ANSWER.  86 adults and 356-86 = 270 children.

CHECK.

86*2.25 + 270*1.75 = 666  dollars.   ! Correct !

5 0
2 years ago
If x is increased by 20%.<br>then what<br>will be the increased percent if there will be x^2?<br>​
nevsk [136]

Answer:

the area will be increased by 44%

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What number is between 0.40 and 0.47 it has to be a fraction
    7·2 answers
  • triangle abc and triangle bcd have vertices A(-6, -7), B(-6, 4), C(2, -7), D(8, 4) what is the area in square units of trapezoid
    10·1 answer
  • 7 divided by something = 1204
    12·1 answer
  • A triangle has an area of 56 square units its height is 14 units what is the length of its base
    13·1 answer
  • Which number is rational
    13·2 answers
  • Marilee takes all the money from her piggy bank and puts it into a savings account at her local bank. The bank promises an annua
    14·2 answers
  • 14.2cm correct to 1 decimal place
    8·2 answers
  • 3 divied \frac{3}{4}[/
    11·2 answers
  • Not enough INFO sas sss​
    7·1 answer
  • I need this ASAP!!! Giving brainliest
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!