1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vanyuwa [196]
2 years ago
12

La integral indefinida de la función h(x)=2x+5x4

Mathematics
1 answer:
Sedaia [141]2 years ago
4 0

Answer:

x^2 + x^5 + C.

Step-by-step explanation:

∫2x + 5x^4 dx

= 2 * x^2/2 + 5 * x^5/5  + C

= x^2 + x^5 + C.

You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
tabita bought peppers that cost 0.79 per pound she paid 3.95 for the peppers how many pounds did she buy
RUDIKE [14]

Answer:

237


Step-by-step explanation:


5 0
4 years ago
How do I work this problem 5[8-(9x-7)]+6x=0?
lys-0071 [83]
<span>5[8-(9x-7)]+6x=0
</span><span>5[8- 9x + 7]+6x=0
40 - 45x + 35 + 6x = 0
-39x = -75
x = -75/-39
x = 1 36/39
x = 1 12/13</span>
3 0
3 years ago
Read 2 more answers
In a right triangle, angle φ has a tangent value of 1.40. The side adjacent to angle φ has a length of 9.0 inches. What is the l
charle [14.2K]

Answer:

b) 12.6 inches

Step-by-step explanation:

tangent is the ratio of the side opposite over adjacent, so if we let x= length of the opposite side, 1.40=x/9, x=12.6 inches

3 0
3 years ago
Help! help! please help ​
iren2701 [21]

Answer:

to answer this i am gonna need the rise and run or the y2 -x2/ y1-x1 and then i well come back and edit this to the right answer

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • In the afternoon, a television station reported the temperature as 3.7°F . That evening, they reported the temperature as −1.5°F
    7·2 answers
  • Patrice Patriot has dimes and uarters in a piggy bank. She has a total of 20 coins for atotal of $4.25. How many dimes does she
    9·2 answers
  • Rosa has a garden divided into sections. She has 125 daisy plants. If she plants in each section of daisies, will she have any l
    10·2 answers
  • Please help this is due today and. I need to get it done fast!!!
    14·1 answer
  • Find the area of the given trapezoid:<br> A = ...... square units
    5·1 answer
  • Cathy practices the piano for a total of 6 hours each week. If she practices fot 3/4 hour each time, how many times each week do
    15·2 answers
  • You put 500 dollars into your savings account. Your bank account offers a yearly interest rate of 3.5% and you leave the money i
    5·1 answer
  • Can someone help me with this please?
    11·1 answer
  • If<br> x-1<br> f(x) = 3x + 1 and 1-1<br> 1,<br> 3<br> then f '(7) =<br> 22<br> O-2<br> 2
    14·1 answer
  • What is the value of x?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!