Answer:β=√10 or 3.16 (rounded to 2 decimal places)
Step-by-step explanation:
To find the value of β :
- we will differentiate the y(x) equation twice to get a second order differential equation.
- We compare our second order differential equation with the Second order differential equation specified in the problem to get the value of β
y(x)=c1cosβx+c2sinβx
we use the derivative of a sum rule to differentiate since we have an addition sign in our equation.
Also when differentiating Cosβx and Sinβx we should note that this involves function of a function. so we will differentiate βx in each case and multiply with the differential of c1cosx and c2sinx respectively.
lastly the differential of sinx= cosx and for cosx = -sinx.
Knowing all these we can proceed to solving the problem.
y=c1cosβx+c2sinβx
y'= β×c1×-sinβx+β×c2×cosβx
y'=-c1βsinβx+c2βcosβx
y''=β×-c1β×cosβx + (β×c2β×-sinβx)
y''= -c1β²cosβx -c2β²sinβx
factorize -β²
y''= -β²(c1cosβx +c2sinβx)
y(x)=c1cosβx+c2sinβx
therefore y'' = -β²y
y''+β²y=0
now we compare this with the second order D.E provided in the question
y''+10y=0
this means that β²y=10y
β²=10
B=√10 or 3.16(2 d.p)
Answer:
The height of the parallelogram relates to the height of the circle because it is equal to the radius of the circle. The height goes from the circumference to the point of any section of the circle. I hope this helps.
Step-by-step explanation:
For this case we have the following fraction:

To find the common denominator, what we must do is rewrite the fraction.
For this, we subtract fractions in the numerator and the sum of fractions in the denominator.
We have then:
We observe that the common denominator is given by the product:

Answer:
the common denominator is:
D)ab
If you're solving for x:
-4x + 6 = 26
- 6 - 6
-4x = 20
/-4 /-4
x = -5