The options are not provided, but method is stated below
Answer:
Quadratic equation ax2 - 6x + c = 0
options would be given for a and c
- substitute a and c
- check for Discriminant
-
- 36 -4ac
These conditions will fetch us the result required among the options.
Note : the
sign will give us the result for Two real unequal solutions and two real equal solutions. If we only need Real unequal solutions we only use > sign instead of
Step-by-step explanation:
You can put the value of x into the equation to solve for y. Hopes this works.
Hi there!
f(x) = − 4x/5 − 8/5
Hope this helps !
Some basic formulas involving triangles
\ a^2 = b^2 + c^2 - 2bc \textrm{ cos } \alphaa 2 =b 2+2 + c 2
−2bc cos α
\ b^2 = a^2 + c^2 - 2ac \textrm{ cos } \betab 2=
m_b^2 = \frac{1}{4}( 2a^2 + 2c^2 - b^2 )m b2 = 41(2a 2 + 2c 2-b 2)
b
Bisector formulas
\ \frac{a}{b} = \frac{m}{n} ba =nm
\ l^2 = ab - mnl 2=ab-mm
A = \frac{1}{2}a\cdot b = \frac{1}{2}c\cdot hA=
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
\iits whatever A = prA=pr with r we denote the radius of the triangle inscribed circle
\ A = \frac{abc}{4R}A=
4R
abc
- R is the radius of the prescribed circle
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)