Answer: Constructive interference
Explanation: Just took the test
Answer:
An effect whereby a mass moving in a rotating system experienced a force acting perpendicular to the direction of motion and to the axis of rotation.
Answer:
a) k = 2231.40 N/m
b) v = 0.491 m/s
Explanation:
Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.
when the box encounters the spring, all the energy of the box is kinetic energy:
the energy relationship between the box and the spring is given by:
1/2(m)×(v^2) = 1/2(k)×(x^2)
(m)×(v^2) = (k)×(x^2)
a) (m)×(v^2) = (k)×(x^2)
k = [(m)×(v^2)]/(x^2)
k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)
k = 2231.40 N/m
Therefore, the force spring constant is 2231.40 N/m
b) (m)×(v^2) = (k)×(x^2)
v^2 = [(k)(x^2)]/m
v = \sqrt{ [(k)(x^2)]/m}
v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}
= 0.491 m/s
The velocity is (3,000/5) = 600 miles per hour west .
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s