Answer:
Explanation:
Angular momentum ( L ) = moment of inertia x angular velocity ( I X ω )
Moment of inertia of two 480 g masses about axle = 2 x mr² = 2 x 480 x10⁻³ x( 24 x 10 ⁻ 2 )² = 0. 552960 kg m².
Angular velocity = 5 rad / s.
Angular momentum = 0.552960 x 5 = 2.765 kg m2.
The direction of angular momentum will be along axle.So vector angular
momentum makes zero degree with axle.
Answer: the average speed of the rat from the information given above is 0.7m/s
Explanation:
position is given as
x(t) = pt² + qt
finding the diffencial of x(t) with respect to t, we have
d(x(t))/dt = 2pt + q
we substitute the p = 0.36m/s² and q= -1.10 m/s
d(x(t))/dt = 2(0.36)t + (-1.10)
so, at t= 1s
d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s
at t= 4s
d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s
To find the average speed,
average speed = (V1 + V2)/ 2
average speed = (1.78 + (-0.38))/2 = 0.7m/s
It must be a virtual image, because this is the only kind of image it can produce.
Relative motion can best be defined as B<span> the motion of one object as it appears to another object.
An example is when you are in a car the car has the actual motion because it is the one moving but you are also moving because of relative motion.</span>
Answer:
Wear a helmet. Stay visible; use bike lights and/or wear bright clothes. Look and Signal; use hand signals to let drivers know where you're going, try to make eye contact with them and look before you go.
Explanation: