Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)
Answer:
3.75 m/s
Explanation:
From the question given above, the following data were obtained:
Acceleration (a) = 1.5 m/s²
Initial velocity (u) = 0 m/s
Time (t) = 2.5 s
Final velocity (v) =?
a = (v – u) / t
1.5 = (v – 0) / 2.5
1.5 = v / 2.5
Cross multiply
v = 1.5 × 2.5
v = 3.75 m/s
Hence, the escape velocity of the squirrel is 3.75 m/s
Answer:
-11.11 degree Celsius
Explanation:
The change was 44 degree fanhereit
To 56 degree fanhereit
Therefore the temperature range can be calculated as follows
56-44
= 12 degree fanhereit to Celsius
= 12-32×5/9
= -20×5/9
= 100/9
= -11.11 degree Celsius