Answer:
best explanation of this is sentence B
Explanation:
The radiation emission of the bodies is given by the expression
P = σ A e T⁴
Where P is the power emitted in watts, σ is the Stefan-Boltzmann constant, A is the surface area of the body, e is the emissivity for black body e = 1 and T is the absolute body temperature in degrees Kelvin.
When the values are substituted the power is quite high 2.5 KW, but the medium surrounding the box also emits radiation
T box ≈ T room
P box ≈ P room
As the two powers are similar and the box can absorbed, since it has the ability to emit and absorb radiation, as the medium is also close of the temperature of the box, the amount emitted is very similar to that absorbed, so the net change in energy is very small.
In the case that the box is much hotter or colder than the surrounding medium if there is a significant net transfer.
Consequently, the best explanation of this is sentence B
Answer:
Explanation:
An industrial system consists of inputs, processes and outputs. The inputs are the raw materials, labor and costs of land,transport, power and other infrastructure. The processes include a wide range of activities that convert the raw material into finished products.
Answer:
Tarzan will be moving at 7.4 m/s.
Explanation:
From the question given above, the following data were obtained:
Height (h) of cliff = 2.8 m
Initial velocity (u) = 0 m/s
Final velocity (v) =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
Finally, we shall determine how fast (i.e final velocity) Tarzan will be moving at the bottom. This can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 2.8)
v² = 0 + 54.88
v² = 54.88
Take the square root of both side
v = √54.88
v = 7.4 m/s
Therefore, Tarzan will be moving at 7.4 m/s at the bottom.
Answer: A projectile is any object in which the only force is gravity
Explanation: Equations on how to calculate projectile velocity is stated below:
The initial velocity Vo being a vector quantity, has two componentsVox and Voy
V0x = V0 cos(θ)
V0y = V0 sin(θ)
The acceleration A is a also a vector with two components Axand Ay given
Ax = 0 and Ay = - g = - 9.8 m/s2
Along the x axis the acceleration is equal to 0 and therefore the velocity Vx is constant
Vx = Vocos(θ)
Along the y axis, the acceleration is uniform and equal to - g and the velocity at time t is g
Vy = Vo sin(θ) - g t
Along the x axis the velocity Vx is constant and therefore the component x of the displacement is
x = Vocos(θ) t
Along the y axis, the motion is of uniform acceleration and the y component of the displacement is
y = Vo sin(θ) t - (1/2) g t2
Answer:
Explanation:
Use the one-dimensional equation
where vf is the final velocity of the dog, v0 is the initial velocity of the dog, a is the acceleration of the dog, and t is the time it takesto reach that final velocity. For us:
0 = 2 + -.43t and
-2 = -.43t so
t = 4.7 seconds