Explanation:
q = mCΔT
where q is heat,
m is mass,
C is specific heat capacity,
and ΔT is temperature change.
For the first ball:
2500 J = (100 g) C (90°C − 25°C)
C = 0.385 J/g/°C
For the second ball:
5000 J = (200 g) C (90°C − 25°C)
C = 0.385 J/g/°C
The two metals have the same specific heat, and are likely the same metal (possibly copper or zinc).
The object with the lighter mass will accelerate more
Answer:
-0.7 m/sec
Explanation:
Mass of first block = m1 =3.0 kg
Mass of second block = m2= 5.0 kg
Velocity of first block = V1= 1.2 m/s
Velocity of second block = V2 = ?
Momentum of Center of mass MVcom is sum of both blocks momentum and is given by
MVcom= m1v1+m2v2
Where
M= mass of center of mass
Vcom= Velocity of center of mass=0 m/s (because center of mass is at rest , so Vcom = 0 m.sec)
Putting values, we get;
0= 3×1.2+5v2
==> v2= 3.6/5= - 0.7 m/s
-ve sign indicates that block 2 is moving in opposite direction of block 1
Explanation:
Solution,
- Mass(m)= 60 kg
- Force (F)= 20 N
- Acceleration (a)= ?
We know that,
- F=ma
- a=F/m
- a=20/60
- a=0.333 m/s²
So, her acceleration is 0.333 m/s².