Density = Mass/Volume
So, given mass = 20 g and volume = 40 cm^3
By substituting in above equation, Density = 20/40 = 0.5 g/cm^3
Hope it helps.
The answer would be in the chart or graph A is 1 B is 2
Answer:
D
Explanation:
There is no friction to stop you from moving BC you are in space, however you have a larger mass than the ball, so it takes more force to get you up to the same speed as the baseball. You will move in the opposite direction of the ball because you exerted force on the ball in one direction and therefore yourself in the opposing direction.
Answer:
10mm
Explanation:
According to Hooke's law which states that "the extension of an elastic material is directly proportional to the applied force provided the elastic limit is not exceeded. Direct proportionality there means, increase/decrease in the force leads to increase/decrease in extension.
Mathematically, F = ke where;
F is the applied force
k is the elastic constant
e is the extension
from the formula k = F/e
k = F1/e1 = F2/e2
Given force of 1N indents the spring inwards by 2mm, this means force of 1N generates extension of 2mm
Let F1 = 1N e1 = 2mm
The extension that will be produced If force of 5N is applied to the string is what we are looking for. Therefore F2 = 5N; e2= ?
Substituting this values in the formula above we have
1/2=5/e2
Cross multiplying;
e2 = 10mm
This shows that we must have dent it by 10mm before it pushes outwards by a 5N force
100. A centimeter is a 100th of a meter.