I say it helped then because TrueType had room
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
Answer:
Explanation:
Let the volume below water be v . Then
buoyant force = v d g where d is density of water , g is acceleration due to gravity
= v x 1000 x g
weight of wood piece = volume x density of wood x g
= .6 x 600 x g
for equilibrium while floating
buoyant force = weight
= v x 1000 x g = .6 x 600 x g
v = .36 m²
volume above water or volume exposed = .6 - .36
= .24 m²
When immersed completely ,
buoyant force = .6 x 1000 x 9.8
= 5880 N
weight of wood
= .6 x 600 x g
= 3528 N
buoyant force is more than the weight . In order to equalise them for floating with full volume in water
weight required = 5880 - 3528
= 2352 N.
Hi, time is independent variable. It's stands alone and isn't change by anything.
Temperature is dependant variable (depends on time)
Mass doesn't depend on where it is, and doesn't change.