Is there more information ?
Answer:

Explanation:
From the question we are told that
Weight of fireman 
Pole distance 
Final speed is 
Generally the equation for velocity is mathematically represented as

Therefore Acceleration a
Generally the equation for Frictional force
is mathematically given as



Therefore

Answer:
86.51° North of West or 273.49°
Explanation:
Let V' = velocity of boat relative to the earth, v = velocity of boat relative to water and V = velocity of water.
Now, by vector addition V' = V + v'.
Since v' = 6.10 m/s in the north direction, v' = (6.10 m/s)j and V = 100 m/s in the east direction, V = (100 m/s)i. So that
V' = V + v'
V' = (100 m/s)i + (6.10 m/s)j
So, we find the direction,Ф the boat must steer to from the components of V'.
So tanФ = 6.10 m/s ÷ 100 m/s
tanФ = 0.061
Ф = tan⁻¹(0.061) = 3.49°
So, the angle from the north is thus 90° - 3.49° = 86.51° North of West or 270° + 3.49° = 273.49°
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 