A. anything less than 3.0 magnitude on a richters scale usually can't be felt by humans but instruments can pick it up.
Answer: 
Explanation:
Let's begin by explaining that according to Kepler’s Third Law of Planetary motion “The square of the orbital period
of a planet is proportional to the cube of the semi-major axis
of its orbit”:
(1)
Now, if
is measured in years (Earth years), and
is measured in astronomical units (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
So, knowing
and isolating
from (2) we have:
(3)
(4)
Finally:
T
his is the distance between the dwarf planet and the Sun in astronomical units
Converting this to kilometers, we have:

Answer:
The answer to your question is:
a) t1 = 2.99 s ≈ 3 s
b) vf = 39.43 m/s
Explanation:
Data
vo = 10 m/s
h = 74 m
g = 9.81 m/s
t = ? time to reach the ground
vf = ? final speed
a) h = vot + (1/2)gt²
74 = 10t + (1/2)9.81t²
4.9t² + 10t -74 = 0 solve by using quadratic formula
t = (-b ± √ (b² -4ac) / 2a
t = (-10 ± √ (10² -4(4.9(-74) / 2(4.9)
t = (-10 ± √ 1550.4 ) / 9.81
t1 = (-10 + √ 1550.4 ) / 9.81 t2 = (-10 - √ 1550.4 ) / 9.81
t1 = (-10 ± 39.38 ) / 9.81 t2 = (-10 - 39.38) / 9.81
t1 = 2.99 s ≈ 3 s t2 = is negative then is wrong there are
no negative times.
b) Formula vf = vo + gt
vf = 10 + (9.81)(3)
vf = 10 + 29.43
vf = 39.43 m/s
Answer:
15.19°, 31.61°, 51.84°
Explanation:
We need to fin the angle for m=1,2,3
We know that the expression for wavelenght is,

Substituting,


Once we have the wavelenght we can find the angle by the equation of the single slit difraction,

Where,
W is the width
m is the integer
the wavelenght
Re-arrange the expression,

For m=1,

For m=2,

For m=3,

<em>The angle of diffraction is directly proportional to the size of the wavelength.</em>