It would be the first one
(D)
Explanation:
The more massive an object is, the greater is the curvature that they produce on the space-time around it.
Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u>
of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u>
of its orbit.
However, if
is measured in <u>years</u>, and
is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing
and isolating
from (2):
(3)
(4)
Finally:
(5)
<span>The legal tradition that kept women from owning property and holding public office came to the United States from: C. Britain.</span>
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,

