Eaither D or A bit I am leaning more towards D
Answer:
T = 29.6 N
Explanation:
length of the rope is
L = 18 m
mass of the rope is
m = 12 kg
now we have
mass per unit length of the rope is given as
[te]\lambda = \frac{12 kg}{18 m}[/tex]
now time taken by wave to reach from end to other



now we have


so we will have

Answer:
yi = Initial height of the helicopter
yf = final height of the helicopter
vyi = component of the initial vertical velocity of the helicopter
g = gravity constant (9.8m/s^2)
yf = yi + vyideltat - 1/2gt^2
0m = 1000m + (15m/2)deltat - 1/2(9.8m/s^2)t^2
-1000m = (15m/s)t - (-4.9m/s^2)t^2
Use the quadratic formula
4.8t^2 - 15t - 1000 = 0
t1 = 15.75s and t2 = -12.65
t2 is rejected, time can't be negative
Thus, it takes 15.75s before the package strikes the ground.
Answer: The center of gravity is 1.1338 m away from the left side of the barbell
Explanation:
Length of the barbell = 1.90 m
The distance center of gravity from left = x
Mass on the left side = 25 kg
The distance center of gravity from right = 1.90 - x
Mass on the right side = 37 kg
At the balance point: 


The center of gravity is 1.1338 m away from the left side of the barbell