1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
4 years ago
11

Which factors improve soil fertility? Select the three correct answers.

Physics
3 answers:
horrorfan [7]4 years ago
7 0
B. Bacteria
C.Earthworms 
D. Humus
@CristianoRonaldo
nirvana33 [79]4 years ago
7 0

Answer: The correct answer is- B) bacteria, C) Earthworm, and D) Humus.

Out of the given options, bacteria, Earthworms, and Humus helps in improving the fertility of soil.

Bacteria and Earthworms can decompose the organic matter and convert it into usable form for plant's growth. They also help in enhancing the amount of air and water in the soil so that it can be efficiently utilized by plants. Humus is an organic material that is dark in color and rich in nutrients as it is obtained by the decay of plant and animal matter. It helps in sustaining moisture in the soil and by providing nutrients, it makes the soil fertile.

Thus, B), C), and D) is the right answer.



Snowcat [4.5K]4 years ago
3 0

Answer: The correct answer is- B) bacteria, C) Earthworm, and D) Humus.


Out of the given options, bacteria, Earthworms, and Humus helps in improving the fertility of soil.

Bacteria and Earthworms can decompose the organic matter and convert it into usable form for plant's growth. They also help in enhancing the amount of air and water in the soil so that it can be efficiently utilized by plants.



Humus is an organic material that is dark in color and rich in nutrients as it is obtained by the decay of plant and animal matter. It helps in sustaining moisture in the soil and by providing nutrients, it makes the soil fertile.


Thus, B), C), and D) is the right answer.



You might be interested in
A mass m attached to a horizontal massless spring with spring constant k, is set into simple harmonic motion. its maximum displa
Lesechka [4]
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:
U_i= \frac{1}{2} ka^2
while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:
K_i =0
And the total energy of the system is
E_i = U_i+K= \frac{1}{2}ka^2

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:
U_f = 0
while the mass is moving at speed v, and therefore the kinetic energy is
K_f =  \frac{1}{2} mv^2
And the total energy is
E_f = U_f + K_f =  \frac{1}{2} mv^2

For the law of conservation of energy, the total energy must be conserved, therefore E_i = E_f. So we  can write
\frac{1}{2} ka^2 =  \frac{1}{2}mv^2
that we can solve to find an expression for v:
v= \sqrt{ \frac{ka^2}{m} }
6 0
3 years ago
The dot or scalar product of two (3d) vec- tors ⃗a = ⟨a1,a2,a3⟩ and ⃗b = ⟨b1,b2,b3⟩ is defined as
Neko [114]

Yes, yes, we know all of that.  It certainly took you long enough to
get around to asking your question.

If
     a = (14, 10.5, 0)
and
     b = (4.62, 9.45, 0) ,

then, to begin with, neither vector has a z-component, and they
 both lie in the x-y plane.

Their dot-product  a · b = (14 x 4.62) + (10.5 x 9.45) =

                                             (64.68)   +   (99.225)  =  163.905 (scalar)          


I feel I earned your generous 5 points just reading your treatise and
finding your question (in the last line).  I shall cherish every one of them.                     

7 0
4 years ago
20 miles per hour north is an example of ______
timofeeve [1]
B. It's an example of velocity due to the fact that it has a measurement of speed, divided by time, and has a specific direction. Acceleration doesn't have any direction on it, but has speed divided by time. C and D have a different mode of measurement despite of the fact that it still needs meters/miles/km.
4 0
3 years ago
Blue light of wavelength λ passes through a single slit of width d and forms a diffraction pattern on a screen. If we replace th
ololo11 [35]

Answer:

We can retain the original diffraction pattern if we change the slit width to d) 2d.

Explanation:

The diffraction pattern of a single slit has a bright central maximum and dimmer maxima on either side. We will retain the original diffraction pattern on a screen if the relative spacing of the minimum or maximum of intensity remains the same when changing the wavelength and the slit width simultaneously.

Using the following parameters: <em>y</em> for the distance from the center of the bright maximum to a place of minimum intensity, <em>m</em> for the order of the minimum, <em>λ </em>for the wavelength, <em>D </em>for the distance from the slit to the screen where we see the pattern and <em>d </em>for the slit width. The distance from the center to a minimum of intensity can be calculated with:

                                                    y\approx\frac{m\lambda D}{d}

From the above expression we see that if we replace the blue light of wavelength λ by red light of wavelength 2λ in order to retain the original diffraction pattern we need to change the slit width to 2d:

<em>                                                 </em>y\approx\frac{m\lambda D}{d} =\frac{m2\lambda D}{2d}

7 0
4 years ago
Explain how birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight.
Oksi-84 [34.3K]

The birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight by creating high pressure below the aircraft and low pressure above it

<h3>What are living and non-living things?</h3>

They both consist of fundamentally simple building blocks. They are composed of substances or mass. Atmospheric and molecular building blocks make up the world.

In order to create high pressure below the aircraft and low pressure above it, airplanes employ specially built wings.

The wing receives sufficient airflow past it to counteract the weight and drag of the aircraft by utilizing a device to provide thrust, such as a propeller.

High pressure underneath the aircraft and low pressure above it is produced by specially constructed wings used by airplanes.

The wing receives enough airflow through it by the use of a thrust-generating device, like a propeller, to overcome the weight and drag of the aircraft.

The differences between how living and non-living things fly;

1. Moving both living and non-living objects consumes energy. Flying animals utilize their wings to create both lift and propulsion by moving them in relation to the body.

In contrast to most air vehicles, where the components that generate lift, wings, and thrust engines or propellers are distinct, the wings stay stationary.

Animal aviators like birds as well as natural parachuters like patagial as well as human inventions like aircraft as well as rockets that can power spacecraft and spaceplanes are just a few examples of the many things that can fly.

Hence, birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight by creating high pressure below the aircraft and low pressure above it

To learn more about living and nonliving things, refer to brainly.com/question/7807759

#SPJ1

6 0
2 years ago
Other questions:
  • Una lancha sube y baja por el paso de las olas cada 3.2 segundos, entre cresta y cresta hay una distancia de 24.5 m. ¿cual es la
    10·1 answer
  • When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 sec
    6·1 answer
  • What is normal for a spring that obeys hook's law ?
    8·2 answers
  • If i have a kinematic equation vf^2=vi^2-2*a(xf-xi), how can i solve for xi step by step
    8·1 answer
  • A hockey puck is struck so that it slides at a constant speed and strikes the far side of the rink, 58.2 m away. The shooter hea
    10·1 answer
  • A 2-kilogram toy car is traveling forward at 1 meter per second when it is hit in the rear by a 3-kilogram toy truck that was tr
    9·1 answer
  • A mass is attached to a spring with an unknown spring constant. The spring gains 10 J of elastic potential energy if stretched b
    13·1 answer
  • You stretch your arm and rotate around the center of yourself in the horizontal plane. Suppose you make 2 full revolutions every
    10·1 answer
  • All of the following are dimensions of progressive overload except multiple choice specificity. time. intensity. frequency.
    12·1 answer
  • How far from the surface of Earth is the magnitude of Earth's gravitational field equal to 7.86 N/kg?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!