Answer:
so initial momentum is 0.22kgm/s
Explanation:
m1=0.20kg
m2=0.30kg
initial velocity of m1=u1=0.50m/s
initial velocity of m2=u2=0.40m/s
total momentum of the system before collision
Pi=m1u1+m2u2
Pi=0.20kg×0.50m/s+0.30kg×0.40m/s
Pi=0.1kgm/s+0.12kgm/s
Pi=0.22kgm/s
<h3>You forgot to add question...Add questions before asking so we can help</h3>
When we rub balloon on a shirt the balloon will steal electrons from the shirt and the shirt will become positively charged and balloon will negatively charged.<span>The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms and this leaves the surface of the wall positively charged.</span>
Answer:
a) Δx = 180.59 m
b) T = 6001 N
Explanation:
a)
According to Newton's second law, which says that acceleration is directly proportional to the net force, the equation is equal to:
ΣF = m*a = T-f
Clearing a, and solving:
a = (T-f)/m = (T-f)/2*m = (12000-5800)/(2*700) = 4.43 m/s^2
To evaluate the final speed the following equation will be used:
vf^2 = vi^2 + 2*a*Δx = 0 + 2*a*Δx = 2*a*Δx
Clearing Δx:
Δx = vf^2/2*a = (40 m/s)^2/(2* 4.43 m/s^2) = 180.59 m
b)
The tension is equal to:
T = m*a + f = (700 kg * 4.43 m/s^2) + 2900 N = 6001 N
Answer:
B
Explanation:
to see how fast she is going per second, you would have to divide the distance traveled by the seconds it took to travel the distance