Whole numbers<span><span>\greenD{\text{Whole numbers}}Whole numbers</span>start color greenD, W, h, o, l, e, space, n, u, m, b, e, r, s, end color greenD</span> are numbers that do not need to be represented with a fraction or decimal. Also, whole numbers cannot be negative. In other words, whole numbers are the counting numbers and zero.Examples of whole numbers:<span><span>4, 952, 0, 73<span>4,952,0,73</span></span>4, comma, 952, comma, 0, comma, 73</span>Integers<span><span>\blueD{\text{Integers}}Integers</span>start color blueD, I, n, t, e, g, e, r, s, end color blueD</span> are whole numbers and their opposites. Therefore, integers can be negative.Examples of integers:<span><span>12, 0, -9, -810<span>12,0,−9,−810</span></span>12, comma, 0, comma, minus, 9, comma, minus, 810</span>Rational numbers<span><span>\purpleD{\text{Rational numbers}}Rational numbers</span>start color purpleD, R, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color purpleD</span> are numbers that can be expressed as a fraction of two integers.Examples of rational numbers:<span><span>44, 0.\overline{12}, -\dfrac{18}5,\sqrt{36}<span>44,0.<span><span> <span>12</span></span> <span> </span></span>,−<span><span> 5</span> <span> <span>18</span></span><span> </span></span>,<span>√<span><span> <span>36</span></span> <span> </span></span></span></span></span>44, comma, 0, point, start overline, 12, end overline, comma, minus, start fraction, 18, divided by, 5, end fraction, comma, square root of, 36, end square root</span>Irrational numbers<span><span>\maroonD{\text{Irrational numbers}}Irrational numbers</span>start color maroonD, I, r, r, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color maroonD</span> are numbers that cannot be expressed as a fraction of two integers.Examples of irrational numbers:<span><span>-4\pi, \sqrt{3}<span>−4π,<span>√<span><span> 3</span> <span> </span></span></span></span></span>minus, 4, pi, comma, square root of, 3, end square root</span>How are the types of number related?The following diagram shows that all whole numbers are integers, and all integers are rational numbers. Numbers that are not rational are called irrational.
To provide a range of values that, with a certain measure of confidence, contains the population parameter of interest.
To provide a range of values that has a certain large probability of containing the population parameter of interest.
Step-by-step explanation:
For estimating a parameter value, it is important to know the statement or degree of confidence that the interval contains the parameter value along with knowing the point estimate and the amount of possible error in the point estimate (which is the interval likely to contain the parameter value).Thus , an interval estimate of a population parameter is the confidence interval with a statement of confidence that the interval contains the parameter value. The confidence interval is a range of values around the statistic that are believed to contain, with a certain probability (say 99%) the true value of that statistic or the population value.
For this problem,all we have to do is translate the word problem into algebraic equations. The equations are as follows:
L = √100 * x = 10x W = 1/2*y - 3/2*x
Since A is equal to length times width A = LW If L is given, we can find the x. Therefore, we must set the equation where the dependent variable is y and the independent variable is x.