-----------------------------------------------
Information Given:
-----------------------------------------------
ON = 7x - 9
LM = 6x + 4
MN = x - 7
OL = 2y - 7
-----------------------------------------------
Since it is a parallelogram:
-----------------------------------------------
ON = LM and
MN = OL
-----------------------------------------------
ON = LM:
-----------------------------------------------
7x - 9 = 6x + 4
-----------------------------------------------
Subtract 6x from both sides:
-----------------------------------------------
x - 9 = 4
-----------------------------------------------
Add 9 to both sides:
-----------------------------------------------
x = 13
-----------------------------------------------
MN = OL:
-----------------------------------------------
x - 7 = 2y - 7
-----------------------------------------------
Sub x = 13:
-----------------------------------------------
13 - 7 = 2y - 7
-----------------------------------------------
Simplify:
-----------------------------------------------
6 = 2y - 7
-----------------------------------------------
Add 7 on both sides:
-----------------------------------------------
13 = 2y
-----------------------------------------------
Divide by 2:
-----------------------------------------------
y = 13/2
-----------------------------------------------
Answer: x = 13, y = 13/2 (Answer D)
-----------------------------------------------
Answer:
21
Step-by-step explanation:
I did the math.
Answer:
44
Step-by-step explanation:
circumference = 2πr = 2*(22/7)*(14/2) = 44
The percentage of young adults send between 128 and 158 text messages per day is; 34%
<h3>How to find the percentage from z-score?</h3>
The distribution is approximately Normal, with a mean of 128 messages and a standard deviation of 30 messages.
We are given;
Sample mean; x' = 158
Population mean; μ = 128
standard deviation; σ = 30
We want to find the area under the curve from x = 248 to x = 158.
where x is the number of text messages sent per day.
To find P(158 < x < 248), we will convert the score x = 158 to its corresponding z score as;
z = (x - μ)/σ
z = (158 - 128)/30
z = 30/30
z = 1
This tells us that the score x = 158 is exactly one standard deviation above the mean μ = 128.
From online p-value from z-score calculator, we have;
P-value = 0.34134 = 34%
Approximately 34% of the the population sends between 128 and 158 text messages per day.
Read more about p-value from z-score at; brainly.com/question/25638875
#SPJ1