Answer:
the probability that he will not win is 2/5 cause it's just the chance that he doesn't win
Answer:
a) The probability that this whole shipment will be accepted is 30%.
b) Many of the shipments with this rate of defective aspirin tablets will be rejected.
Step-by-step explanation:
We have a shipment of 3000 aspirin tablets, with a 5% rate of defects.
We select a sample of size 48 and test for defectives.
If more than one aspirin is defective, the batch is rejected.
The amount of defective aspirin tablets X can be modeled as a binomial distribution random variable, with p=0.55 and n=48
We have to calculate the probabilities that X is equal or less than 1: P(X≤1).
![P(X\leq1)=P(X=0)+P(X=1)\\\\\\P(0)=\binom{48}{0}(0.05)^0(0.95)^{48}=1*1*0.0853=0.0853\\\\\\P(1)=\binom{48}{1}(0.05)^1(0.95)^{47}=48*0.05*0.0897=0.2154\\\\\\P(X\eq1)=0.0853+0.2154=0.3007](https://tex.z-dn.net/?f=P%28X%5Cleq1%29%3DP%28X%3D0%29%2BP%28X%3D1%29%5C%5C%5C%5C%5C%5CP%280%29%3D%5Cbinom%7B48%7D%7B0%7D%280.05%29%5E0%280.95%29%5E%7B48%7D%3D1%2A1%2A0.0853%3D0.0853%5C%5C%5C%5C%5C%5CP%281%29%3D%5Cbinom%7B48%7D%7B1%7D%280.05%29%5E1%280.95%29%5E%7B47%7D%3D48%2A0.05%2A0.0897%3D0.2154%5C%5C%5C%5C%5C%5CP%28X%5Ceq1%29%3D0.0853%2B0.2154%3D0.3007)
Answer:
The answer is x = 20
Step-by-step explanation:
If you set both equations equal to each other and solve for x, you will get 20.
3x+32 = 5x-8 add 8 to both sides
3x+40 = 5x subtract 3x from both sides
40 = 2x divide by 2 on both sides
20 = x
The average price paid by him for the shares after 3 months is ksh. 163.33
<h3>Average</h3>
- Total value of shares bought = ksh.20,000
- Amount of shares bought in the first three months = ksh.120, ksh.160 and ksh.210
Average price paid for the shares after 3 months
= (120 + 160 + 210) / 3
= 490 / 3
= 163.333333333333
Approximately,
ksh. 163.33
Learn more about average:
brainly.com/question/20118982
#SPJ1
Answer:
<u />![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%3D%20%5Cboxed%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_{x \to c} x = c](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20x%20%3D%20c)
Special Limit Rule [L’Hopital’s Rule]:
![\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bf%27%28x%29%7D%7Bg%27%28x%29%7D)
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.
![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D)
<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B3%20%2B%201%7D%20-%202%7D%7B3%20-%203%7D)
- Evaluate:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Cfrac%7B%5Csqrt%7B3%20%2B%201%7D%20-%202%7D%7B3%20-%203%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B0%7D%7B0%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%5Cend%7Baligned%7D)
- [Limit] Differentiate [Derivative Rules and Properties]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
- [Limit] Apply Limit Rule [Variable Direct Substitution]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%20%2B%201%7D%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
- Evaluate:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cboxed%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%5C%5C%5Cend%7Baligned%7D)
∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits