Answer:
F = 3.6 x 10⁻²⁴ N
Explanation:
The force of attraction or repulsion between two charges is given by the Coulomb's Law. Coulomb's Law states that:
F = kq₁q₂/r²
where,
F = Electric Force between electrons = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
q₁ = q₂ = Charge on electron = 1.6 x 10⁻¹⁹ C
r = distance between electrons = 0.8 cm = 0.008 m
Therefore,
F = (9 x 10⁹ N.m²/C²)(1.6 x 10⁻¹⁹ C)(1.6 x 10⁻¹⁹ C)/(0.008 m)²
<u>F = 3.6 x 10⁻²⁴ N</u>
The kind of wave it is Longitudinal
Answer:
v = 8.72 m/s
Explanation:
To find the speed of the raindrop joint to the mosquito, you take into account the momentum conservation law for an inelastic collision. Before the collision the total momentum of raindrop and mosquito must be equal to the total momentum of both raindrop and mosquito after the collision.
(1)
v1: speed of the mosquito before the collision= 0 m/s (it is at rest)
v2: speed of the raindrop before the collision = 8.9 m/s
m1: mass of the mosquito
m2: mass of the raindrop = 50m1 (50 time more massive that the mosquito)
v: speed of both raindrop and mosquito after the collision
You solve the equation (1) for v and replace the values of the rest of the parameters:

hence, after the inelastic collision the speed of the raindrop andmosquito is 8.72 m/s
Depending on what you are working with, it would be a solid
A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.