I de momento que no what now what the que no se puede el gobierno del presidente y el gobierno
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer:
The weight of measuring stick is 9.8 N
Explanation:
given information:
the mass of the rock,
= 1 kg
measuring stick, x =1 m
d = 0.25 m
to find the weight of measuring stick, we can use the following equation:
τ = Fd
τ = 0
-
= 0
F_{r} = the force of the rock
F_{s} = the force of measuring stick

= m g
= 1 kg x 9.8 m/s
= 9.8 N
thus, the weight of measuring stick is 9.8 N
22.5 J
Explanation:
Given:
x = 3 m

The spring potential energy
is


<h2>
Answer:</h2>
In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:

So the average power is:

But:

So:

![P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}](https://tex.z-dn.net/?f=P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%28%5Cfrac%7B1%2Bcos%282%5Comega%20t%29%7D%7B2%7D%20%29dt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7Bcos%282%5Comega%20t%29%7D%7B2%7D%5Ddt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B4%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2T%7D%5B%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B2%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2%7D)
In terms of RMS values:
