Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
Answer:
The velocity of the ship relative to the earth V = 9.05 
Explanation:
The local ocean current is = 1.52 m/s
Direction
= 40°
Velocity component in X - direction
= 1.52
°
= 1.164 
Velocity component in Y - direction
= 8 + 1.52
°
= 8.97 
The velocity of the ship relative to the earth

Put the values of
and
we get,
⇒ 
⇒ V = 9.05 
This is the velocity of the ship relative to the earth.
<h2>distance = 523 cm</h2>
Explanation:
( a ) The rotational speed of the ladybug = 25 r.p.m = 25/60 r.p.s
= 5/12 rev/sec
( b ) The definition of frequency is the number of rotations per second .
Here the number of rotations per second is 5/12 . Thus frequency = 5/12 Hz
( c ) The tangential speed is v = angular velocity x radius of rotation
The angular velocity ω = 2π x n , where n is the number of rotations per second
Thus angular velocity = 2π x 5/12 = 5π/6 rad/sec
The linear velocity = angular velocity x distance from center of record
Thus tangential speed = 5π/6 x 10 = 25π/3 cm/sec
Angular displacement in 20 sec = ω x t = 5π/6 x 20 = 50π/3 rad
Linear displacement = angular displacement x distance from center of record
= 50π/3 x 10 = 500π/3 = 523 cm
Answer:
that would probably be Rock A is harder than Rock B
Explanation:
Because if Rock A can scratch Rock B then it obviously means that Rock A is harder.
Right?
Hope This Helps You Out♡