(c) When the two pulses completely overlap on the string forms a straight line.
A single disturbance that travels via a transmission medium is referred to as a pulse. This medium might be formed of stuff or a vacuum, and it might be endlessly large or finite in size.
Consider two pulses that are identical in shape and proceed in opposite directions along a string, with the exception that one has positive displacements of the string's elements while the other has negative displacements.
On the string, the two pulses blend together completely.
The pulses completely balance one another out in terms of removing string elements from equilibrium, yet the string still moves. Shortly after the string is once again shifted, the pulses will have passed each other.
The correct option is (c)
Learn more about pulse here:
brainly.com/question/14885673
#SPJ4
Explanation:
For a charge concentrated nearly at a point, the electric field is directly proportional to the amount of charge; it is inversely proportional to the square of the distance radially away from the centre of the source charge and depends also upon the nature of the medium.
Answer:
C. Burning coal tends to harm the environment more than using solar panels.
Explanation:
When coal is burned, it reacts with the oxygen in the air. This reaction converts the stored potential energy, which turns into thermal energy, which is released as heat. But it also produces methane and carbon dioxide which is released into the air.
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
Answer:
The pressure exerted by camel feet is <u>2000 N/m²</u>.
Step-by-step explanation:
<h3><u>Solution</u> :</h3>
Here, we have given that ;
- Force applied on camel feet = 4000 N
- Total area of camel feet = 2 m²
We need to find the pressure exerted by camel feet.
As we know that :

Substituting all the given values in the formula to find the pressure exerted by camel feet.

Hence, the pressure exerted by camel feet is 2000 N/m².
