Answer:
Explanation:
The magnetic field due to straight wire is into the square coil.
As the current in straight wire decreases the magnetic flux in the coil decreases
. The induced magnetic field is into the coil.The induced current is along +y direction
Answer:
Magnetic flux through the loop is 1.03 T m²
Explanation:
Given:
Magnetic field, B = 4.35 T
Radius of the circular loop, r = 0.280 m
Angle between circular loop and magnetic field, θ = 15.1⁰
Magnetic flux is determine by the relation:
....(1)
Here A represents area of the circular loop.
Area of circular loop, A = πr²
Hence, the equation (1) becomes:

Substitute the suitable values in the above equation.

= 1.03 T m²
Answer:
I may not have the answer so i'll just give up some hints.
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.
I hope my little bit (big you may say) hint help you with your question.
Answer:
Stable atom
Explanation:
A stable atom is one that has a balanced nuclear inter-particle force reaction as such the binding energy of a stable atom is sufficient to permanently keep the nucleus as one unit. Examples of a stable atom are the atoms of monoisotopic elements such as fluorine, sodium, iodine, gold, aluminium, and cobalt.
In a stable atom the expected number of proton, neutron, and electron are present while in an unstable atom or radioactive atom, there are more than the expected number of neutrons or protons, such that the internal energy of the nucleus is excessive and more than the binding energy, which can lead to radioactive decay.
Complete question:
Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength at the midpoint between the two rings ?
Answer:
The electric field strength at the mid-point between the two rings is zero.
Explanation:
Given;
diameter of each ring, d = 10 cm = 0.1 m
distance between the rings, r = 21.0 cm = 0.21 m
charge of each ring, q = 40 nC = 40 x 10⁻⁹ C
let the midpoint between the two rings = x
The electric field strength at the midpoint between the two rings is given as;

Therefore, the electric field strength at the mid-point between the two rings is zero.