1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
14

Suppose a rocket ship in deep space moves with constant acceleration equal to 9.80 m/s2, which gives the illusion of normal grav

ity during the flight. (a) If it starts from rest, how long will it take to acquire a speed 12% that of light, which travels at 3.0 × 108 m/s? (b) How far will it travel in so doing?
Physics
1 answer:
DochEvi [55]3 years ago
7 0

Answer:

a) 3673469.39 seconds

b) 6.61×10¹⁴ m

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0.12×3×10⁸ m/s

s = Displacement

a = Acceleration due to gravity = 9.8 m/s²

Equation of motion

v=u+at\\\Rightarrow 0.12\times 3\times 10^8=0+9.8t\\\Rightarrow t=\frac{0.12\times 3\times 10^8}{9.8}=3673469.39\ s

Time taken to reach 12% of light speed is 3673469.39 seconds

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{(0.12\times 3\times 10^8)^2-0^2}{2\times 9.8}\\\Rightarrow s=6.61 \times 10^{14}\ m

The distance it would have to travel is 6.61×10¹⁴ m

You might be interested in
In the stream, water waves bunched up as the water flowed by. As we
Paladinen [302]
Yea it would be barrier. since the stream has a cover for the water
7 0
3 years ago
Technician A says some compressor service procedures can be performed on the vehicle if space permits. Technician B says modern
stiv31 [10]

Answer:

Technicians A.

Explanation:

Since air compressor uses series of processes that turn incoming ambient air into a power source for tools and machinery. This means that air compressor has many different parts, and each of these parts must be maintained to ensure they function properly and optimally.

These are the basis when it comes to servicing a compressor

You need to change its oil

And clean its filters.

Inspected it's filters every three months, and have its filters replaced and connections tightened at least once every year.

To do all these can be performed on the vehicle if there is enough space just as Technician A said for the question context.

5 0
3 years ago
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
rjkz [21]

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

3 0
3 years ago
Read 2 more answers
Adults with Down syndrome can often find work because they have received _____.
IrinaK [193]

Answer:

education and job training

4 0
4 years ago
Read 2 more answers
Magnet A has twice the magnetic field strength of magnet B and pulls on magnet B with a force of 100 N. The amount of force that
son4ous [18]

The force exerted by the magnetic in terms of the magnetic field is,

F\propto B

Where B is the magnetic fied strength and F is the force.

Thus, if the magnetic A has twice magnetic field strength than the magnet B,

Then,

B_A=2B_B

Thus, the force exerted by the magnet B is,

\begin{gathered} F_B\propto B_B \\ F_B\propto\frac{B_A}{2} \\ F_B=\frac{F_A}{2} \\ F_B=\frac{100}{2} \\ F_B=50\text{ N} \end{gathered}

Thus, the force exerted by the magnet B on magnet A is 50 N.

The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.

Hence, the option B is the correct answer.

3 0
1 year ago
Other questions:
  • When an object is located 32 cm to the left of the lens, the image is formed 17 cm to the right of the lens. What is the focal l
    10·1 answer
  • An electron has an uncertainty in its position of 587 pm . part a what is the uncertainty in its velocity?
    8·1 answer
  • When the outermost energy level of an atom is full it tends to be?
    6·2 answers
  • What is the horizontal component of the force on the ball after it leaves the throwers hands
    7·1 answer
  • Two of the types of ultraviolet light, uva and uvb, are both components of sunlight. their wavelengths range from 320 to 400 nm
    12·2 answers
  • What color of light has the shortest wavelength
    14·1 answer
  • A softball is hit over a third baseman's head with some speed v0 at an angle θ above the horizontal. Immediately after the ball
    5·1 answer
  • The same strength force was exerted in the same direction on both Object A and Object B. Why did Object A go faster than Object
    15·1 answer
  • 1. (3 points) Convert the given distances to kilometers using the
    13·1 answer
  • A force F = (2xî + 4yĵ), where F is in newtons and x and y are in meters, acts on an object as the object moves in the x-directi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!