Answer:
Δ BEC ≅ Δ AED
Step-by-step explanation:
Consider triangles BCA and ADB. Each of them share a common side, AB. Respectively each we should be able to tell that AD is congruent to BC, and DB is congruent to CA, so by SSS the triangles should be congruent.
_________
So another possibility is triangles BEC, and AED. As you can see, by the Vertical Angles Theorem m∠BEC = m∠ADE, resulting in the congruency of an angle, rather a side. As mentioned before AD is congruent to BC, and perhaps another side is congruent to another in the same triangle. It should be then, by SSA that the triangles are congruent - but that is not an option. SSA does is one of the exceptions, a rule that is not permitted to make the triangles congruent. Therefore, it is highly unlikely that triangles BEC and AED are congruent, but that is what our solution, comparative to the rest.
Δ BEC ≅ Δ AED .... this is our solution
<span><span>ab:ac=3:5
bd:cd=7:2
if cd is 5 cm then cd=2:5 then ab=3:x
2:5=3:x
15=2x
x=15/2
x=7.5 cm</span><span>
Happy studying! ^_^</span></span>
Sin(theeta) = square root(3)/2
theeta = sin inverse [square root (3)/2]
theeta = 60 degrees
as seen from trignometric table
Answer:
2x - 10 = 44 + 8x
7x - 4 = 20 =3x
2(x-3) = -20
15 - 4x + 5 = 32
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
2*x-10-(44+8*x)=0
Pull out like factors :
-6x - 54 = -6 • (x + 9)
-6 = 0
Solve : x+9 = 0
Subtract 9 from both sides of the equation :
x = -9
x = -9
Move all terms containing
x
to the left side of the equation.
4
x
−
4
=
20
Move all terms not containing
x
to the right side of the equation.
4
x
=
24
divide each term by 4
x = 6
2(x−3)=−20
Step 1: Simplify both sides of the equation.
2(x−3)=−20
2x−6=−20
Step 2: Add 6 to both sides.
2x−6+6=−20+6
2x=−14
Step 3: Divide both sides by 2.
2x
2
=
−14
2
x=−7
−4x+20=32
Step 2: Subtract 20 from both sides.
−4x+20−20=32−20
−4x=12
Step 3: Divide both sides by -4.
−4x
−4
=
12
−4
x=−3
First option:
y=money saved
x=number of months
y=30x+500
Second option:
y=50x+200
We have this system of equations:
y=30x+500
y=50x+200
We can solve this system of equations by equalization method
30x+500=50x+200
30x-50x=200-500
-20x=-300
x=-300/-20
x=15
so;
y=30x+500
y=30(15)+500
y=450+500
y=950
Answer; after 15 months, she would save the same amount using either option, the amount saved in either option will be $950.